
The Journal of Systems & Software 176 (2021) 110936

T
a

b

o
l
c
h
c
i
w
a

s
h
S
u
I
l
a

B

(

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Code smell detection by deep direct-learning and transfer-learning✩

ushar Sharma a,∗, Vasiliki Efstathiou b, Panos Louridas b, Diomidis Spinellis b

Siemens Technology, Charlotte, USA
Athens University of Economics and Business, Athens, Greece

a r t i c l e i n f o

Article history:
Received 11 July 2020
Received in revised form 21 January 2021
Accepted 1 March 2021
Available online 6 March 2021

Keywords:
Code smells
Smell detection tools
Deep learning
Transfer-learning

a b s t r a c t

Context: An excessive number of code smells make a software system hard to evolve and maintain.
Machine learning methods, in addition to metric-based and heuristic-based methods, have been
recently applied to detect code smells; however, current methods are considered far from mature.
Objective: First, explore the feasibility of applying deep learning models to detect smells without
extensive feature engineering. Second, investigate the possibility of applying transfer-learning in the
context of detecting code smells.
Methods: We train smell detection models based on Convolution Neural Networks and Recurrent
Neural Networks as their principal hidden layers along with autoencoder models. For the first objective,
we perform training and evaluation on C# samples, whereas for the second objective, we train the
models from C# code and evaluate the models over Java code samples and vice-versa.
Results: We find it feasible to detect smells using deep learning methods though the models’
performance is smell-specific. Our experiments show that transfer-learning is definitely feasible for
implementation smells with performance comparable to that of direct-learning. This work opens up
a new paradigm to detect code smells by transfer-learning especially for the programming languages
where the comprehensive code smell detection tools are not available.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

The metaphor of code smells is used to indicate the presence
f quality issues in source code (Fowler, 1999; Sharma and Spinel-
is, 2018). A large number of smells in a software system is asso-
iated with a high level of technical debt (Kruchten et al., 2012)
ampering the system’s evolution. Given the practical signifi-
ance of code smells, software engineering researchers have stud-
ed the concept in detail and explored various aspects associated
ith it including causes, impacts, and detection methods (Sharma
nd Spinellis, 2018).
A large body of work has been carried out to detect smells in

ource code. Traditionally, metric-based (Marinescu, 2005; Sale-
ie et al., 2006) and rule/heuristic-based (Moha et al., 2010;
harma et al., 2016) smell detection techniques are commonly
sed (Sharma and Spinellis, 2018; Rasool and Arshad, 2015).
n recent years, smell detection techniques based on machine-
earning (Maiga et al., 2012b; Czibula et al., 2015) have emerged
s a potent alternative as they not only have the potential to

✩ Editor: [RAFFAELA MIRANDOLA].
∗ Correspondence to: Siemens Technology, 5101 Westinghouse
lvd, Charlotte, USA.

E-mail addresses: tusharsharma@ieee.org (T. Sharma), vefstathiou@aueb.gr
V. Efstathiou), louridas@aueb.gr (P. Louridas), dds@aueb.gr (D. Spinellis).
ttps://doi.org/10.1016/j.jss.2021.110936
164-1212/© 2021 Elsevier Inc. All rights reserved.
bring human judgment in the smell detection but also provide
the grounds for transferring results from one problem to another.
Researchers have used Bayesian belief networks (Khomh et al.,
2009, 2011), support vector machines (Maiga et al., 2012a), and
binary logistic regression (Bryton et al., 2010) to identify smells.

The resilience of machine learning models renders them ap-
propriate for reuse beyond the bounds of tasks they may have
been trained on. Transfer-learning refers to the technique where a
learning algorithm exploits the commonalities between different
learning tasks to enable knowledge transfer across tasks (Bengio
et al., 2013). In this context, it would be plausible to explore the
possibility of leveraging the availability of tools and data related
to code smell detection in a programming language in order to
train machine learning models that address the same problem
on another language. The cross-application of a machine learning
model could provide opportunities for detecting smells without
actually developing a language-specific smell detection tool from
scratch.

Despite the potential prospects, existing approaches for ap-
plying machine learning techniques for smell detection offer sig-
nificant room for improvement. In a recent study, Nucci et al.
(2018) note, after observing practices such as improper data han-
dling in existing software engineering literature, that the problem
of detecting smells still requires extensive research to attain a
maturity.

https://doi.org/10.1016/j.jss.2021.110936
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2021.110936&domain=pdf
mailto:tusharsharma@ieee.org
mailto:vefstathiou@aueb.gr
mailto:louridas@aueb.gr
mailto:dds@aueb.gr
https://doi.org/10.1016/j.jss.2021.110936


T. Sharma, V. Efstathiou, P. Louridas et al. The Journal of Systems & Software 176 (2021) 110936

n
h
g
h
m
f
s
i
F
t
t
a
a
f
c
s

w
N
s
i
(
t
s
f
b

m

p
m
s
W
i
c

p
g
o
d
o
a
a
a

o
F
o
T
i
e
o
s
i

Furthermore, machine learning techniques (such as Bayesian
etworks, support vector machines, and logistic regression) that
ave been applied so far require considerable pre-processing to
enerate features for the source code, a substantial effort that
inders their adoption in practice. Traditionally, researchers use
achine-learning methods that require extracting feature-sets

rom source code. Typically, code metrics are used as the feature
et for smell detection purposes. We perceive two shortcomings
n such usage of machine-learning methods for detecting smells.
irst, availability of an external tool to compute metrics for the
arget programming language on which we would like to apply
he machine learning model becomes the prerequisite. Second
nd more importantly, we are limiting the machine learning
lgorithm to use only the metrics that we are computing and
eeding as feature-set. Therefore, the machine learning algorithm
annot observe any pattern that is not captured by the provided
et of metrics.
In this context, deep learning models, specifically neural net-

orks, offer a compelling alternative. The Convolution Neural
etwork (cnn) and the Recurrent Neural Network (rnn) are
tate-of-the-art supervised learning methods currently employed
n many practical applications, including image recognition
Krizhevsky et al., 2012; Szegedy et al., 2015), speech recogni-
ion (Sainath et al., 2015), and natural language processing (John-
on and Zhang, 2015). These advanced models are capable of in-
erring features during training and can learn to classify samples
ased on these inferred features.
In this paper, we present experiments with deep learning

odels with two specific goals:

• To investigate whether deep learning methods can effec-
tively detect code smells. In particular, to employ architec-
tures that include layers of cnns, rnns as well as autoen-
coders, inspect how different models perform on detecting
diverse code smells and how model performance is affected
by tweaking the learning hyper-parameters.

• To investigate whether results on smell detection through
deep learning are transferable; specifically, to explore
whether models trained for detecting smells on a program-
ming language can be re-used to detect smells on another
language.

Keeping these goals in mind, we define research questions and
repare an experimental setup to detect four smells viz. complex
ethod, complex conditional, feature envy, and multifaceted ab-
traction using deep learning models in different configurations.
e develop a set of tools and scripts to automate the exper-

ment and collate the results. Based on the results, we derive
onclusions to our addressed research questions.
The contributions of this paper are summarized below.

• An extensive study that applies deep learning models in
detecting code smells without carrying out extensive fea-
ture engineering and compares the performance of different
methods; to the best of our knowledge this is the first study
of this kind and scale.

• An exploration that not only shows the feasibility of ap-
plying transfer-learning for identifying code smells but also
compares the performance of deep learning models in the
transfer-learning context. This exploration potentially will
open a new paradigm to detect smells specifically for pro-
gramming languages for which mature code smell detection
tools are not available.

• Openly available tools, scripts, and data used in this ex-
periment1 to promote replication as well as incremental
studies.

1 https://github.com/tushartushar/DeepLearningSmells.
 m

2

• The study identifies and documents challenges that we per-
ceived and opportunities that the exploration offered.

The rest of the paper is organized as follows. Section 2 sets
up the stage by presenting background and related work. We
define our research objective in Section 3 and research method in
Section 4. Section 5 presents our findings, discussion, and further
research opportunities. We present threats to validity of this work
in Section 6 and conclude in Section 7.

2. Background and related work

In this section, we present the background about the topic of
code smells as well as machine learning and elaborate on the
related literature.

2.1. Code smells

Kent Beck coined the term ‘‘code smell’’ (Fowler, 1999) and
defined it as ‘‘certain structures in the code that suggest (or some-
times scream) for refactoring’’. Code smells indicate the presence
of quality problems impacting many facets of quality (Sharma
and Spinellis, 2018) of a software system (Fowler, 1999; Surya-
narayana et al., 2014). The presence of an excessive number of
smells in a software system makes it hard to maintain and evolve.

Smells are categorized as implementation (Fowler, 1999), de-
sign (Suryanarayana et al., 2014), and architecture smells (Garcia
et al., 2009a) based on their scope, granularity, and impact.
Implementation smells are typically confined to a limited scope
and impact (e.g., a method). Examples of implementation smells
are long method, complex method, long parameter list, and com-
lex conditional (Fowler, 1999). Design smells occur at higher
ranularity, i.e., abstractions, and hence are confined to a class
r a set of classes. God class, multifaceted abstraction, cyclic-
ependency modularization, and rebellious hierarchy are examples
f design smells (Suryanarayana et al., 2014). Along similar lines,
rchitecture smells span across multiple components and have
system-wide impact. Some examples of architecture smells

re god component (Lippert and Roock, 2006), feature concentra-
tion (de Andrade et al., 2014), and scattered functionality (Garcia
et al., 2009b).

A plethora of work related to code smell detection exists in
the software engineering literature. Researchers have proposed
methods for detecting smells that can be largely divided into
five categories (Sharma and Spinellis, 2018). Metric-based smell
detection methods (Marinescu, 2005; Vidal et al., 2014; Salehie
et al., 2006) take source code as input, prepare a source code rep-
resentation, such as an Abstract Syntax Tree (ast), compute a set
of source code metrics, and detect smells by applying appropriate
thresholds (Marinescu, 2005). Rule/Heuristic-based smell detection
methods (Moha et al., 2010; Sharma et al., 2016; Arnaoudova
et al., 2013; Tsantalis and Chatzigeorgiou, 2011) typically take
source code representations and sometimes additional software
metrics as input. They detect a set of smells when the defined
rules/heuristics get satisfied. History-based smell detection meth-
ds use source code evolution information (Palomba et al., 2015;
u and Shen, 2015). Such methods extract structural information
f the code and how it has changed over a period of time.
his information is used by a detection model to infer smells
n the code. Optimization-based smell detection approaches (Sahin
t al., 2014; Ouni et al., 2015; Kessentini et al., 2014) apply an
ptimization algorithm on computed software metrics and, in
ome cases, existing examples of smells to detect new smells
n the source code. Further studies compare different detection
ethods (Palomba et al., 2018; Paiva et al., 2017).

https://github.com/tushartushar/DeepLearningSmells


T. Sharma, V. Efstathiou, P. Louridas et al. The Journal of Systems & Software 176 (2021) 110936

2

c
t
t
t
w
b
w
l
o
i
2
g
K
c
a
a
t

a
t
s
a
p
1
o
a
L
i
e
i
u
p
a
(
i
c
a
A
d
d
p
L
o
v
f
s
s
e
o
t
t
2
e
p
a
u
d
b
i
t
e
n
w

.2. Deep learning

Deep learning is a subfield of machine learning that allows
omputational models composed of multiple processing layers
o learn representations of data with multiple levels of abstrac-
ion (LeCun et al., 2015; Goodfellow et al., 2016). Even though
he idea of layered neural networks with internal ‘‘hidden’’ units
as already introduced in the 80s (Rumelhart et al., 1986), a
reakthrough in the field came in 2006 by Hinton et al. (2006)
ho introduced the idea of learning a hierarchy of features one

evel at a time. Ever since, and particularly during the course
f the last decade, the field has taken off due to the advances
n hardware, the release of benchmark datasets (Deng et al.,
009; Krizhevsky and Hinton, 2009; LeCun et al., 2010), and a
rowing research focus on optimization methods (Martens, 2010;
ingma and Ba, 2014). Although deep learning architectures often
onsist of tens or hundreds of successive layers, much shallower
rchitectures may also fall under the category of deep learning,
s long as at least one hidden layer exists between the input and
he output layer.

Deep learning architectures are being used extensively for
ddressing a multitude of detection, classification, and predic-
ion problems. Architectures involving layers of cnns are in-
pired by the hierarchical organization of the visual cortex in
nimals, which consists of alternating layers of simple and com-
lex cells (Felleman and Van Essen, 1991; Hubel and Wiesel,
962). cnns have been proven particularly effective for problems
f optical recognition and are widely used for image classification
nd detection (Krizhevsky et al., 2012; Szegedy et al., 2015;
eCun et al., 1998), segmentation of regions of interest in biolog-
cal images (Kraus et al., 2016), and face recognition (Lawrence
t al., 1997; Parkhi et al., 2015). Besides recognition of directly
nterpretable visual features of an image, cnns have also been
sed for pattern recognition in signal spectrograms, with ap-
lications in speech recognition (Sainath et al., 2015). In these
pplications the input data are given in the form of matrices
2d arrays) for representing the 2d grid layout of pixels in an
mage. 1d representations of data have been used for applying 1d
onvolutions in sequential data such as textual patterns (Johnson
nd Zhang, 2015) or temporal event patterns (Lee et al., 2017;
bdeljaber et al., 2017). However, when it comes to sequential
ata, rnns (Rumelhart et al., 1986) have been proven superior
ue to their capability to dynamically ‘‘memorize’’ information
rovided in previous states and incorporate it to a current state.
ong Short Term Memory (lstm) networks are a special kind
f rnn that can connect information spanning long-term inter-
als, thus capturing long-term dependencies. lstms have been
ound to perform reasonably well within the context of repre-
entative applications that exhibit sequential patterns, such as
peech recognition and music modeling (Greff et al., 2017; Graves
t al., 2013). In addition, they have been established as state-
f-the-art networks for a variety of natural language processing
asks; indicative applications include natural language genera-
ion (Wen et al., 2015), sentiment classification (Wang et al.,
016; Baziotis et al., 2017) and neural machine translation (Cho
t al., 2014), among others. Finally, approaches for addressing
roblems of both visual and sequential nature, rely on the use of
utoencoders (Rumelhart et al., 1985). Autoencoders have been
sed in the past for performing dimensionality reduction and
ata compression (Kramer, 1991; Hinton and Zemel, 1994). The
asic idea of an autoencoder is that the input data is encoded
nto a compressed bottleneck-like representation which is in
urn reconstructed back to an approximation of the input; the
ncoding–decoding process takes place in an unsupervised man-
er. Over the last decade, variants of autoencoders have been
idely used as part of deep architectures for addressing problems
3

of visual recognition (Vincent et al., 2008; Masci et al., 2011)
and natural language processing (Socher et al., 2011; AP et al.,
2014). One of the advantages of autoencoders is that they have
been proven robust to cross-domain generalizations (Chen et al.,
2012), thus providing solutions for domains where training data
is imbalanced or scarce. In a similar vein, autoencoders have
been used for discovering patterns that do not conform to some
– otherwise homogeneous – data sample. Following the same
rationale as in using linear dimensionality reduction methods
such as Principal Components Analysis (pca) for outlier detection,
autoencoders have been used as a non-linear alternative for dis-
covering anomalies in extremely imbalanced data. Examples of
problems where relevant methods have been used include image
processing (Zhou and Paffenroth, 2017), and the identification
of anomalies in spacecraft telemetry data (Sakurada and Yairi,
2014).

2.3. Machine learning techniques on source code

The emergence of online open-source repository hosting plat-
forms such as GitHub in recent years has led to an explosion on
the volumes of openly available source code along with meta-
data related to software development activities; this bulk of data
is often referred to as ‘‘Big Code’’ (Allamanis et al., 2018). As
an effect, software maintenance activities have started lever-
aging the wealth of openly available data, the availability of
computational resources, and the recent advances in machine
learning research. In this context, statistical regularities observed
in source code have revealed the repetitive and predictable na-
ture of programming languages, which has been compared to
that of natural languages (Hindle et al., 2012; Ernst, 2017). To
this end, problems of automation in natural language process-
ing, such as identification of semantic similarity between texts,
translation, text summarization, word prediction and language
generation have been examined in the context of automating
software development tasks. Relevant problems in software de-
velopment include clone detection (White et al., 2016; Wei and
Li, 2017), de-obfuscation (Vasilescu et al., 2017), language migra-
tion (Nguyen et al., 2013), source code summarization (Iyer et al.,
2016), auto-correction (Pu et al., 2016; Gupta et al., 2017), auto-
completion (Foster et al., 2012), generation (Oda et al., 2015; Ling
et al., 2016; Yin and Neubig, 2017), and comprehension (Alexan-
dru et al., 2017).

On a par with equivalent problems in natural language pro-
cessing, the methods employed for automating several software
engineering tasks are switching from traditional rule-based and
probabilistic n-gram models to deep learning methods. The ma-
jority of the proposed deep learning solutions rely on the use
of rnns which provide sophisticated mechanisms for captur-
ing long term dependencies in sequential data, and specifically
lstms (Hochreiter and Schmidhuber, 1997) that have been proved
particularly effective for modeling natural language. Relevant
methods have been applied on source code, aiming either to
produce improved representations for encoding semantics of
snippets (Alon et al., 2018), or as part of solutions to downstream
tasks. Tasks that involve code edits have attracted particular
interest, due to the practical implications induced by learning
to automate pertinent maintenance activities. Employed towards
this quest have been methods inspired from research on neural
machine translation, such as the multi-layered lstms sequence-
to-sequence model (Sutskever et al., 2014). Results produced by
leveraging equivalent architectures, with representations of code
snippets before and after applying some change, show the poten-
tial that the seq-to-seq model has towards learning meaningful
repairs and refactorings (Chen et al., 2019; Tufano et al., 2019).
Simpler types of networks that have produced promising results



T. Sharma, V. Efstathiou, P. Louridas et al. The Journal of Systems & Software 176 (2021) 110936

T
C

c
o
l
a

u
s
s
a
b
e
T
i
f
m

able 1
omparison of code smell detection techniques using machine learning.
Study Machine learning method Detected smells Feature-set

Khomh et al. (2009) Bayesian belief networks Blob Code metrics
Khomh et al. (2011) Bayesian belief networks Blob, functional decomposition, spaghetti code Code metrics

Maiga et al. (2012b,a) Support vector machine Blog, functional decomposition, spaghetti code,
swiss army knife, Code metrics

Bryton et al. (2010) Binary logistic regression Long method Code metrics
Barbez et al. (2019) cnn-based architecture God class, feature envy Code metrics
Arcelli Fontana et al. (2016) 16 machine learning algorithms Data class, god class, feature envy, long method Code metrics

Kim (2017) Neural network Large class, lazy class, data class, parallel
inheritance hierarchy, god class, feature envy

Code metrics

Liu et al. (2019) cnn-based, neural, lstm-based network Feature envy, long method, large class, misplaced
class

Code metrics and textual
information

Hadj-Kacem and Bouassida (2018) Neural network and autoencoder God class, data class, feature envy, long method Code metrics

This study cnn, rnn, and autoencoder-based network Complex method, complex conditional, feature
envy, multifaceted abstraction

Tokenized source code
for semantic representations of code are based on the use of
autoencoders (White et al., 2016; Tufano et al., 2018).

Alternative approaches to mining source code have employed
nns in order to learn features from various representations
f code. Li et al. (2017) have used single-dimension cnns to
earn semantic and structural features of programs by working
t the ast level of granularity and combining the learned features

with traditional hand-crafted features to predict software defects.
This method however incorporates hand-crafted features in the
learning process and is not proven to yield transferable results.
Similarly, a one-dimensional cnn-based architecture has been
sed by Allamanis et al. (2016) in order to detect patterns in
ource code and identify ‘‘interesting’’ locations where attention
hould be focused. The objective of the study is to predict short
nd descriptive names of source code snippets (e.g., a method
ody) given solely its tokens. cnns have also been used by Huo
t al. (2016) in order to address the problem of bug localization.
his approach leverages both the lexical information expressed
n the natural language of a bug report and the structural in-
ormation of source code in order to learn unified features. A
ore coarse-grain approach that also employs cnns has been

proposed in the context of program comprehension (Ott et al.,
2018) where the authors use imagery rather than script in order
to discriminate between scripts written in two programming lan-
guages, namely Java and Python. Similarly, Ren et al. (2019) use
a cnn-based neural network to identify self-admitted technical
debt. Rantala and Mäntylä (2020) use NLP techniques to identify
technical debt from comments. cnn-based models along with NLP
techniques are used by Zampetti et al. (2020) to identify code
patterns to help pay-back technical debt.

2.4. Machine learning on smell detection

In recent times, machine learning-based smell detection meth-
ods have attracted software engineering researchers. Machine
learning is a subfield of artificial intelligence that trains solu-
tions to problems rather than modeling them through hard-coded
rules. In this approach, the rules that solve a problem are not
set a-priori; rather, they are inferred in a data-driven manner.
In supervised learning, a model is trained by being exposed to
examples of instances of the problem along with their expected
answers and statistical regularities are drawn. The representa-
tions that are learned from the data can in turn be applied and
generalized to new, unseen data in a similar context.

Table 1 presents a comparison of existing attempts to de-
tect smells using machine learning techniques. A typical ma-
chine learning smell detection method starts with a mathematical
model representing the smell detection problem. Existing exam-
ples and source code models are used to train the model. The
4

trained model is used to classify or predict the code fragments
into smelly or non-smelly instances.Khomh et al. (2009, 2011)
use a Bayesian approach for the detection of three design smells.
Their study forms a Bayesian graph using a set of metrics and
determines the probability of a class being positive to a smell.
Similarly, Maiga et al. (2012b,a) employ support vector machine-
based classifiers, trained using a set of 60 object-oriented metrics
for each class to detect design smells (blob, feature concentra-
tion, spaghetti code, and swiss army knife). Furthermore, Bryton
et al. (2010) detect long method smell instances by employ-
ing binary logistic regression. They use commonly used method
metrics, such as Method Lines of Code (mloc) and cyclomatic
complexity as regressors. Barbez et al. (2019) present an ensem-
ble method that combine outcomes of multiple tools to detect
god class and feature envy smells. They identify a set of key
metrics for each smell and feed them to a cnn-based architecture.
Arcelli Fontana et al. (2016) compare performance of various ma-
chine learning algorithms in detecting data class, god class, feature
envy, and long method. Azadi et al. (2018) introduce WekaNose, a
semi-automated tool that learns rules by identifying correlations
between code smell instances and relevant metrics. Fontana and
Zanoni (2017) use regression-based methods with extensively
engineered features in order to classify code smell instances
according to their severity. Overall, research on smell detection
with machine learning techniques relies mostly on traditional
methods with decision trees and support vector machines being
the most commonly used algorithms (Azeem et al., 2019). Recent
approaches that adapt deep learning architectures in the context
of smell detection are limited. These presume substantial data
engineering (Kim, 2017), to the extent of combining metrics
relevant to different features exhibited in code (e.g., textual and
structural features) (Liu et al., 2019), or hybrid methods that
include a feature learning stage before feeding the data into the
neural network (Hadj-Kacem and Bouassida, 2018).

The performance of a machine learning model primarily de-
pends on the choice of suitable data representations that will
adequately capture informative features for the task in hand.
Another crucial factor for the performance of a model is the
amount of available training data and the formation of the evalu-
ation samples. As the proportion of positive and negative samples
becomes more imbalanced, the classification task of the models
becomes harder. Hence, a model would perform significantly
better when classifying data from balanced datasets. Most of the
above-mentioned approaches do not explicitly mention the ratio
of positive and negative samples used for the evaluation. Fontana
et al. (2016) carry out the evaluation using 140 positive and 280
negative samples for each smell which is considerably balanced
compared to a realistic case. We further discuss this issue and
demonstrate the effect of class imbalance in Section 5.



T. Sharma, V. Efstathiou, P. Louridas et al. The Journal of Systems & Software 176 (2021) 110936

2

s
p
c
s
e
s
t
s
t
c
t
a
t
f
m
s
s
c
D
a
w

o
T
p
m
a
a
f
t
T
w
c
i
c
t
i
c
t

2

t
p

2

p
C
t
A
h
t

t
t
o
l
e
N
m
d

.5. The need of applying deep learning for smell detection

Section 2.1 describes existing techniques for detecting code
mells. Mainstream tools use rule-based and metric-based ap-
roaches to detect smells (Sharma and Spinellis, 2018). However,
ontext plays an important role in deciding whether a reported
mell is actually a quality issue for the development team, and
xisting tools do not consider the context while detecting the
mells. For example, a method with a switch-case statement with
en cases, where each case instance has only a couple of simple
tatements will be detected as a complex conditional smell by
he mainstream tools, because the associated rule (cyclomatic
omplexity greater than a threshold) will be triggered. However,
he method’s developer might not consider it complex, because
ll case phrases share the same structure. When it comes to
he tools’ validation, even manual annotation is often inadequate
or ensuring the validity of the source code element rules. The
ain reason is that validation is typically carried out on open-
ource projects where the human validators are viewing the code
nippets for the first time. Therefore, even though the tools are
orrect by the defined rules they still lack context-sensitivity.
eep learning, without specific feature set specification (such
s metrics), could bring the code’s context under consideration
hen detecting smells.
The above discussion takes us to the next question: how to

btain or generate much needed training data for deep learning?
he training data clearly need to be prepared considering the
roject’s context, because the aim is to make smell detection
ore context-sensitive. However, to the best of our knowledge,
large training dataset for training models of this scale is not
vailable. In this study, we are using training data generated
rom existing tools as a first step towards assessing the extent
o which smell detection is feasible via deep learning techniques.
he study is a preliminary evaluation to verify the extent to
hich deep learning is suitable to detect smells that may involve
ontext-sensitivity. This provides a stepping stone for future stud-
es that will address more sophisticated problems such as custom
ontext-sensitive smell detection. Such studies could replace our
raining data with manually annotated context-sensitive train-
ng data to achieve context-sensitive smell detection, thus over-
oming the burden of hard coding custom rules into existing
ools.

.6. Challenges in applying deep learning on source code

Applying deep learning techniques on source code is non-
rivial. In this section, we present challenges that we face in the
rocess of applying deep learning techniques on source code.

.6.1. Limits in analogies with other domains
Deep learning is advancing rapidly in domains that address

roblems of image, video, audio, text, and speech processing (Le-
un et al., 2015). Consequently, these advances drive current
rends in deep learning and inspire applications across disciplines.
s such, studies that apply deep learning on source code rely
eavily on results from these domains, and particularly that of
ext mining.

Based on prior observations that demonstrate similarity be-
ween source code and natural language (Hindle et al., 2012),
he research community has largely addressed relevant problems
n mining source code by adopting latest state-of-the-art natural
anguage processing methods (Allamanis et al., 2016; Palomba
t al., 2016; Iyer et al., 2016; Vasilescu et al., 2017; Yin and
eubig, 2017). However, besides similarities, there also exist
ajor differences that need to be taken into consideration when

esigning such studies. First of all, source code, unlike natural

5

language, is semantically fragile; minor syntactic changes can
drastically change the meaning of code (Allamanis et al., 2018). As
an effect, treating code as text by ignoring the underlying formal
semantics carries the risk of not preserving the appropriate mean-
ing. Besides formal semantics, the syntax of source code obviously
presents substantial differences compared to the syntax found in
text. As a result, methods that perform well on text are likely
to under-perform on source code. Architectures involving cnn-
1d layers, for instance, have been proven effective for matching
subsequences of short lengths (Chollet, 2017), which are often
found in natural language where the length of sentences is lim-
ited. This however does not necessarily apply on self-contained
fragments of source code, such as method definitions, which tend
to be longer. In order to address these shortcomings, currents
research invests on developing appropriate representations for
code (Allamanis et al., 2017; Alon et al., 2019, 2018).

Finally, even though good practices dictate naming conven-
tions in coding, unlike natural language, there is no universal vo-
cabulary of source code. This results to a diversity in the artificial
vocabulary found in source code that may affect the quality of the
models learned. Rare and complex identifiers constantly devised
by developers result to limited repetition of terms, as well as pat-
terns of locality, that are not common in natural language (Hel-
lendoorn and Devanbu, 2017). The implications of these pecu-
liarities in the quality of the resulting machine-learned models
are acknowledged by the community, whilst latest research ad-
vances aim towards addressing these shortcomings (Karampatsis
et al., 2020; Babii et al., 2019; Markovtsev et al., 2018) and
painstakingly re-examining past results (Rahman et al., 2019).

Approaches that treat code as text mainly focus on the mining
of sequential patterns of source code tokens. Other emerging
approaches look into structural characteristics of the code with
the objective of extracting visual patterns delineated on code (Ott
et al., 2018). Even though there are features in source code,
such as nesting, which demonstrate distinctive visual patterns,
treating source code in terms of such patterns and ignoring the
rich intertwined semantics carries the risk of oversimplifying the
problem.

2.6.2. Lack of resources
Research employing deep learning techniques on software

engineering data, including source code as well as other relevant
artifacts, is still young. Consequently, results against traditional
baseline techniques are very limited (Fu and Menzies, 2017;
Hellendoorn and Devanbu, 2017) while the debate on whether
deep neural networks are suitable for modeling source code is
still open (Hellendoorn and Devanbu, 2017; Karampatsis and Sut-
ton, 2019). Especially when it comes to processing solely source
code artifacts, relevant studies are scarce and mostly address the
problem of drawing out semantics related to the functionality
of a piece of code (Allamanis et al., 2016; White et al., 2015,
2016; Mou et al., 2016; Piech et al., 2015). To the best of our
knowledge, our study is the first to thoroughly investigate the
application of deep learning techniques with the objective of
examining characteristics of source code quality without making
use of derived features. Therefore, a major challenge in studies of
this kind is that there is no prior knowledge that would guide this
investigation, a challenge reflected on all stages of the inquiry.
At the level of designing an experiment, there exist no rules
of thumb indicating a set up for a deep learning architecture
that adequately models the fine-grained features required for
the problem in hand. Furthermore, at the level of training a
model, there is no prior baseline for hyper-parameters that would
lead to an optimal solution. Finally, at the level of evaluating a
trained model, there exist no benchmarks to compare against;
there is no prior concrete indication on the expected outcomes in



T. Sharma, V. Efstathiou, P. Louridas et al. The Journal of Systems & Software 176 (2021) 110936

t
o
m
a

d
d
f
c
s
i
a
s
m
r
l
o
s
a
2
i
d
s
e
a
n
C
i
(
l
v
n

3

a
F
f
w
e

R

W
t
2
t
r
t

m

p
g
t

d

a
w
s
v
e
s

c

t
m
w
h
f
m

R

t
s
s
f
p
p
c
w
t

l

g
m
c
f

p

w
g
e
g
p
e

4

p
p
a

4

9
D
a
t
f
t
n

erms of reported metrics. Hence, a result that would appear sub-
ptimal in another domain such as natural language processing,
ay actually account for a significant advance in software quality
ssessment.
Besides challenges that relate to the know-how of applying

eep learning techniques on source code, there are technical
ifficulties that arise due to the paucity of curated data in the
ield. The need for openly available data that can serve for repli-
ating data-driven studies in software engineering has been long
tressed (Robles, 2010). The release of curated data in the field
s encouraged through badging artifact-evaluated papers as well
s dedicated data showcase venues for publication. However, the
oftware engineering domain is still far from providing bench-
ark datasets, whereas the available datasets are limited to cu-

ated collections of repositories with associated metadata that
ack ground truth annotation that is essential for a multitude
f supervised machine learning tasks. Therefore, unlike domains
uch as image processing and natural language processing where
n abundance of annotated data exist (Krizhevsky and Hinton,
009; Deng et al., 2009; LeCun et al., 2010; Maas et al., 2011),
n the field of software engineering the lack of gold standards in-
uces the inherent difficulty of collecting and curating data from
cratch. The need for curating datasets of reference in software
ngineering studies has been recognized in the past (Dallmeier
nd Zimmermann, 2007), however, the progress in this front has
ot kept pace with the increasing volumes of data in the wild.
urrent efforts for overcoming this limitation include establish-
ng benchmarks for evaluating results on semantic code search
Husain et al., 2019) and testing (Just et al., 2014), and the re-
ease of large-scale pretrained models for programming language
ocabularies (Efstathiou and Spinellis, 2019), in an analogy to the
atural language paradigm (Grave et al., 2018).

. Research objectives

The goal of this research is to explore the plausibility of
pplying state-of-the-art deep learning methods to detect smells.
urthermore, within the same context, this work examines the
easibility of applying transfer-learning. Based on the stated goals,
e define the following research questions that this work aims to
xplore.

Q1 Is it possible to detect code smells using deep learning
methods? If yes, which deep learning method performs
superior?

e use cnn, rnn and autoencoder models in this exploration. For
he cnn-based architecture, we provide input samples in 1d and
d format to observe the difference in their capabilities due to
he added dimension; we refer to them as cnn-1d and cnn-2d
espectively. In the context of this research question, we define
he following hypotheses.

RQ1.H1: It is feasible to detect code smells using deep learning
ethods.
The considered deep learning models have demonstrated high

erformance in the domain of image processing and natural lan-
uage processing (Luong et al., 2015). We believe we can leverage
hese models in the presented context.

RQ1.H2: cnn-2d performs better than cnn-1d in the context of
etecting smells.
The rationale behind this hypothesis is the added dimension-

lity in cnn-2d. The 2d model might observe inherent patterns
hen input data is presented in two dimensions that may pos-
ibly be hidden in one dimensional format. For instance, a 2-d
ariant could possibly identify the nesting depth of a method
asier than its 1-d counterpart when detecting complex method
mell.
6

RQ1.H3: rnn models perform better than cnn models in the
context of detecting smells.

rnns are considered better for capturing sequential patterns
and have the reputation to work well with text. Thus, taking into
account the similarities that source code and natural language
share, rnn models could prove superior to cnn models.

RQ1.H4: rnn and cnn variants of autoencoder model exhibit
omparable performance to those of rnn and cnn-1d models.
An autoencoder model could be realized in various ways. In

his work, we experiment with three variants of autoencoder
odels in which the models use fully connected neural net-
ork layers, lstm layers, and convolution layers respectively. We
ypothesize that the performance of the autoencoder variants
ollow a pattern similar to that observed with rnn and cnn-1d
odels.

Q2 Is it possible to detect code smells by applying transfer-
learning techniques on similar languages? If yes, which
deep learning model exhibits superior performance in
detecting smells when applied in transfer-learning set-
ting?

Transfer-learning is the capability of an algorithm to exploit
he similarities between different learning tasks and provide a
olution for a task by transferring knowledge acquired while
olving another task. We would like to explore whether it is
easible to train a deep learning model from samples of C# and
redict the smells using this trained model in samples of Java
rogramming language and vice-versa. The feasibility exploration
an be termed positive if the produced results are comparable
ith the results obtained from direct learning (RQ1). We derive
he following hypotheses.

RQ2.H1: It is feasible to detect code smells by applying transfer-
earning techniques on similar languages.

Given the high similarity in the syntax between the two pro-
ramming languages considered in this study, we believe that we
ay train a model on samples of the one language and use it to
lassify smelly and non-smelly fragments on evaluation samples
rom the other.

RQ2.H2: The performance of transfer-learning is inferior com-
ared to that of direct-learning.
Direct-learning in the context of our study refers to the case

here training and evaluation samples belong to the same pro-
ramming language. We expect that the performance of the mod-
ls in transfer-learning could be inferior to that of direct-learning,
iven that in direct-learning both training and evaluation sam-
les come from the same programming language, and hence are
xpected to exhibit homogeneous features.

. Research method

This section describes the employed research method by first
roviding an overview and then elaborating on the data curation
rocess. We also discuss the selection protocol of smells and
rchitecture of the deep learning models.

.1. Overview of the method

Fig. 1 provides an overview of the experiment. We download
22 C# and 1721 Java repositories from GitHub. We use the
esignite and DesigniteJava smell detection tools to analyze C#
nd Java code respectively. We use CodeSplit, a set of utilities,
o extract each method and class definition into separate files
rom C# and Java programs. Then the learning data generator uses
he detected smells to bifurcate code fragments into positive or
egative samples for a specified smell—positive samples contain



T. Sharma, V. Efstathiou, P. Louridas et al. The Journal of Systems & Software 176 (2021) 110936

t
T
g
s
e
o
p
n

4

t
p

4

s

4

(
a
o
b
(

T
s
o
y
p
e
i
c
a

d

Fig. 1. Overview of the proposed method.

he smell while the negative samples are free from that smell.
okenizer takes a method or class definition and generates inte-
er tokens for each token in the source code. As a preprocessing
tep we remove identical samples on the Tokenizer’s output, thus
nsuring that the effects of code duplication on the evaluation
f the resulting models are mitigated (Allamanis, 2019). The
rocessed output of the Tokenizer is ready to feed to the neural
etworks.

.2. Data curation

In this section, we elaborate on the process of generating
raining and evaluation samples along with the tools used in the
rocess.

.2.1. Downloading repositories
We use the following protocol to identify and download our

ubject systems.

• We download repositories containing C# and Java code
from GitHub. We use RepoReapers (Munaiah et al., 2017)
to filter out low-quality repositories. RepoReapers analyzes
GitHub repositories and provides scores for eight dimen-
sions of their quality. These dimensions are architecture,
community, continuous integration, documentation, history,
license, issues, and unit tests.

• We select all the repositories where at least seven out of
eight RepoReapers’ dimensions have suitable scores for both
C# and Java repositories. We consider a score suitable if it
has a value greater than zero.

• We ensure that RepoReapers results do not include forked
repositories (Spinellis et al., 2020).

• We discard repositories with fewer than ten stars and less
than 1000 loc.

• Following these criteria, we get a filtered list of 922 C# and
1721 Java repositories. We select a random subset of 922
Java repositories (by choosing a seed from the system clock
for the random number generator) from the filtered Java
repository list in order to mitigate the discrepancy between
the volume of C# and Java code to be analyzed.

• Finally, we download and analyze the selected 922 C# and
922 Java repositories.

.2.2. Smell detection
We use Designite to detect smells in C# code. Designite

Sharma et al., 2016; Sharma, 2016) is a software design quality
ssessment tool for code written in C#. It supports detection
f 11 implementation, 20 design, and seven architecture smells
y analyzing source code properties at different granularities
method, class, and component). It also provides commonly used
7

code metrics and other features such as trend analysis, code clone
detection, and dependency structure matrix to help developers
assess the software quality.2

Similar to the C# version, we have developed DesigniteJava
(Sharma, 2018), which is an open-source tool for analyzing and
detecting smells in a Java codebase. The tool supports detection
of 18 design and ten implementation smells. Both the C# and Java
versions implement the same rules to detect smells.

We use the console version of Designite (version 3.4.0) and
DesigniteJava (version 1.5.0) to analyze C# and Java code respec-
tively and detect the specified design and implementation smells
in each of the downloaded repositories.
Manual validation: We conducted a manual validation to estab-
lish the accuracy of the used tools. We chose the well-known
open-source repository DotNetOpenAuth3 for this purpose. The
repository implements OpenAuth and OpenID protocol in C# and
has a long development history (3500 commits at the time of
writing this paper). It has been used by more than 19.6 thou-
sand repositories and has attracted 742 stars. From this reposi-
tory, we selected three projects DotNetOpenAuth.Core, Dot-
NetOpenAuth.OpenId.RelyingParty.UI and OAuthClient.
he selected projects contain 22,027 loc and 166 classes. We
ought help from two volunteers to carry out manual validation—
ne volunteer works in a software development company (three
ears of industrial experience) and another volunteer is a com-
uter science Ph.D. student with one year of industrial experi-
nce. None of the volunteers has worked on the analyzed repos-
tory before; however, they both have hands-on experience on
omplex industrial solutions and have a fair idea of software
rchitecture and code smells.
We enforced the following protocol for the validation.

• Each volunteer carried out the initial manual analysis indi-
vidually without discussing it with the other volunteer.

• Given their industry experience, they were familiar with the
concept of code smell and were aware of commonly known
smells. Each volunteer was presented the definition of each
of the four considered design and implementation smells
and interviewed to verify its correct understanding. We also
provided additional material to accelerate their learning.

• Both the individuals went through all source code files one
by one and checked the existence of each smell following
the corresponding definition.

• While identifying smells, they were allowed to use ide fea-
tures such as go to definition and list all references as well as
metrics generated from other tools they wish to use.

• While identifying smells, they were presented with method/
class metrics.

• Once both the volunteers completed the analysis, we com-
puted Cohen’s Kappa (Cohen, 1960) to measure the mutual
agreement between the volunteers’ findings. We obtained
κ = 0.65 as the value of Cohen’s Kappa.

• Once both completed their individual analysis, they dis-
cussed their results, sorted out differences, and prepared a
consolidated mutually agreed report of results.

• Next, they used Designite and analyzed the considered
project and obtained a list of design and implementation
smells.

• They compared the results obtained from the tool with
their set of smells and tagged them as true-positive, false-
positive, and false-negative.

2 A free academic license of Designite can be requested—http://www.
esignite-tools.com/acad-lic-request/.
3 https://github.com/DotNetOpenAuth/DotNetOpenAuth.

http://www.designite-tools.com/acad-lic-request/
http://www.designite-tools.com/acad-lic-request/
https://github.com/DotNetOpenAuth/DotNetOpenAuth


T. Sharma, V. Efstathiou, P. Louridas et al. The Journal of Systems & Software 176 (2021) 110936

d
s
r

b

i
i
m
p

i
s
i
A
f
d
a
c
l
f
a
i
i
d
m
i

4

m

Fig. 2. Tokens generated by Tokenizer for an example.

Both volunteers manually scanned 166 classes for the two
esign smells and 280 methods for the two implementation
mells. They found that the tool’s result matched their manual
esult except two instances of feature envy design smell. In both
the cases, the tool was not counting the class members (i.e.,
methods and fields) belonging to another class when more than
one member is referenced from the class under analysis. We
fixed the problem in the tool before using it in our experiments;
hence the tool shows perfect precision and recall for the smells
considered in the experiment.

4.2.3. Splitting code fragments
CodeSplit is a set of two utility programs, one for each pro-

gramming language, that split methods or classes written in
C# and Java source code into individual files. Hence, given a
C# or Java project, the utilities can parse the code correctly
(using Roslyn for C# and Eclipse jdt for Java), and emit the
individual method or class fragments into separate files following
hierarchical structure (i.e., namespaces/packages become folders).
CodeSplit for Java is an open-source project that can be found
on GitHub (Sharma, 2019b). CodeSplit for C# can be downloaded
freely online (Sharma, 2019a).

4.2.4. Generating training and evaluation data
The learning data generator requires information from two

sources; a list of detected smells for each analyzed repository and
a path to the folder where the code fragments corresponding to
the repository are stored. The program takes a method (or class
in case of design smells) at a time and checks whether the given
smell has been detected in the method (or class) by Designite. If
the method (or class) suffers from the smell, the program puts
the code fragment into a ‘‘positive’’ folder corresponding to the
smell otherwise into a ‘‘negative’’ folder.

4.2.5. Tokenizing learning data
Machine learning algorithms require the inputs to be given

in a representation appropriate for extracting the features of
interest, given the problem in hand. For a multitude of machine
learning tasks it is a common practice to convert data into numer-
ical representations before feeding them to a machine learning
algorithm. In the context of this study, we need to convert source
code into vectors of numbers honoring the language keywords
and other semantics. Tokenizer (Spinellis, 2019) is an open-source
tool that provides, among others, functionality for tokenizing
source code elements into integers where different ranges of
integers map to different types of elements in source code. Fig. 2
shows a small C# method and corresponding tokens generated
by Tokenizer. Currently, it supports six programming languages,
including C# and Java.
8

4.2.6. Data preparation
The stored samples are read into numpy arrays, preprocessed,

and filtered. We first perform bare minimum preprocessing to
clean the data—for both 1d and 2d samples—we scan all the
samples for each smell and remove duplicates if any exist.

The data preparation steps are explained below.

• We split the samples in the ratio of 70-30 for training; i.e.,
70% of the samples are used for training a model while 30%
samples are used for evaluation.

• For the training samples, we perform the following steps.

– We limit the maximum number of positive/negative
samples to 5000. Therefore, for instance, if the number
of negative samples is greater than 5000, we keep for
the experiment exactly 5000 samples and drop the rest
i.e., adopting an under-sampling technique (Pecorelli
et al., 2020).

– We perform model training using balanced samples,
i.e., we balance the number of samples for training
by choosing the smaller number between the positive
and negative sample count; we discard the remaining
training samples from the surplus.

• For the evaluation samples, we perform the following steps.

– The training and evaluation time depend on the num-
ber of samples. We limit the maximum number of
positive/negative evaluation samples to 150,000 and
50,000 for implementation and design smells respec-
tively to reduce the processing load. Even with these
limits, all the experiments take 298 h to complete with
the best hardware available to us. The upper limit of
the samples is set way higher than the typical sample
size in studies from the similar domain.

– In the process of removing excess evaluation samples,
we maintain the ratio between positive and negative
samples for evaluation.

Table 2 presents data preparation process by providing num-
er of samples in each step for all smells.
Each individual input instance, either a method in the case of

mplementation smells, or a class in the case of design smells,
s stored in the appropriate data structure depending upon the
odel that will use it. In 1d representation, each individual in-
ut instance is represented by a flat 1d array of sequences of

tokens, compatible for use with the rnn, cnn-1d and the au-
toencoder models. In the 2d representation, each input instance
s represented by a 2d array of tokens, preserving the original
tatement-by-statement delineation of source code thus provid-
ng the grid-like input format that is required by cnn-2d models.
ll the individual samples are stored in a few files (where each
ile size is approximately 50 mb) to optimize the I/O operations
ue to a large number of files. We read all the samples into
numpy array and we filter out the outliers. In particular, we

ompute the mean input size and discard all the samples with
ength over one standard deviation away from the mean. This
iltering helps us keep the training set in reasonable bounds and
voids waste of memory and processing resources. We pad the
nput array with zeros to the extent of the longest remaining
nput in order to create vectors of uniform length and bring the
ata in the appropriate format for using with the deep learning
odels. Finally, we shuffle the array of input samples along with

ts corresponding labels array.

.3. Selection of smells

Over the last two decades, the software engineering com-
unity has documented many smells associated with different



T. Sharma, V. Efstathiou, P. Louridas et al. The Journal of Systems & Software 176 (2021) 110936

d
t
s
t
a
m
e
u
u
o
s
t
w
w

c

Table 2
Number of samples in each step of preparing input data.

Initial samples 70–30 split Applying max limit Balancing

cm
Positive Training 24,963 17,474 5,000 5,000

Evaluation 7,489 7,489 7,489

Negative Training 464,866 325,406 5,000 5,000
Evaluation 139,460 139,460 139,460

cc
Positive Training 6,186 4,330 4,330 4,330

Evaluation 1,856 1,856 1,856

Negative Training 484,790 339,353 5,000 4,330
Evaluation 145,437 145,437 145,437

fe
Positive Training 1,800 1,260 1,260 1,260

Evaluation 540 540 528

Negative Training 170,439 119,307 5,000 1,260
Evaluation 51,132 50,000 50,000

ma
Positive Training 293 205 205 205

Evaluation 88 88 85

Negative Training 172,412 120,688 5,000 205
Evaluation 51,724 50,000 50,000
d
t
c
p
o
p
l
b
a
m
o
2
t
i
h

d
b
o
e
t
s

c
l
o
c
c
r
a
w
d
l
o
t
i
o

p
t
b
b
t

granularities, scope, and domains (Sharma and Spinellis, 2018). A
comprehensive taxonomy of well-established software smells can
be found online.4 For this study, selection of smells is a crucial
ecision that needs to balance ambition with practicality. On
he practicality front, the scope of the higher granularity smells,
uch as design and architecture smells, is wide, often spanning
o multiple classes and components. It is essential to provide
ll the intertwined source code fragments to the deep learning
odel to make sure that the model captures the key deciding
lements from the provided input source code. Hence, it is nat-
rally difficult to detect them using deep learning approaches,
nless extensive feature engineering is performed beforehand in
rder to attain an appropriate representation of the data. We
tarted with implementation smells because they can be detected
ypically just by looking at a method. To address ambition, we
ould like to avoid very simple smells (such as long method)
hich can be easily detected by less sophisticated techniques.
We chose complex method (cm—i.e., the method has high cy-

lomatic complexity) and complex conditional (cc—i.e., a condition
expression in a conditional statement such as if statement is
complex). These two smells represent two dissimilar cases where
neural networks have to spot specific features. To detect complex
conditional, the neural networks must spot a specific range of to-
kens within only conditional blocks. On the other hand, detection
of complex method requires looking at the entire method and the
structural property within it (i.e., nesting depth of the method).

To expand the experiment’s ambition, we also select two
design smells feature envy (fe—i.e., a method seems more in-
terested in an abstraction other than the one it actually is in)
and multifaceted abstraction (ma—i.e., a class has more than one
responsibility assigned to it). The scope of these smells is larger
(i.e., the whole class) and detection is not trivial since the neural
network has to capture cohesion and coupling aspects. These
smells not only allow us to compare the capabilities of neural
networks in detecting implementation smells and design smells
but also sets the stage for the future work to build on.

4.4. Architecture of deep learning models

In this section, we present the architecture of the neural
network models that we use in this study. The Python implemen-
tation of the experiments using the Keras library can be found
online (Sharma, 2021).

4 http://www.tusharma.in/smells.
 e

9

4.4.1. cnn model
Fig. 3 presents the architecture of the cnn model used to

etect smells. This architecture is inspired by typical cnn archi-
ectures used in image classification (Krizhevsky et al., 2012) and
onsists of a feature extraction part followed by a classification
art. The feature extraction part is composed of an ensemble
f layers, specifically, convolution, batch normalization, and max
ooling layers. This set of layers forms the architecture’s hidden
ayers. The convolution layer performs convolution operations
ased on the specified filter and kernel parameters and computes
ccordingly the network weights to the next layer, whereas the
ax pooling layer effectuates a reduction on the dimensionality
f the feature space. Batch normalization (Ioffe and Szegedy,
015) mitigates the effects of varied input distributions for each
raining mini-batch, thus optimizing training. In order to exper-
ment with different configurations, we use one, two, and three
idden layers.
The output of the last max pooling layer is connected to a

ropout layer. Dropout performs another type of regularization
y ignoring some randomly selected nodes during training in
rder to prevent over-fitting (Srivastava et al., 2014). In our
xperiments we set the dropout rate for the layer to be equal
o 0.1 which means that the nodes to be ignored are randomly
elected with probability 0.1.
The output of the last dropout layer is fed into a densely

onnected classifier network that consists of a stack of two dense
ayers. These classifiers process 1d vectors, whereas the incoming
utput from the last hidden layer is a 3D tensor. The tensor
orresponds to the height and width of an input sample and
hannel; in this case, the number of channels is one. For this
eason, a flatten layer is used first, to transform the data in the
ppropriate format before feeding them to the first dense layer
ith 32 units and relu activation. This is followed by the second
ense layer with one unit and sigmoid activation. This last dense
ayer comprises the output layer and contains a single neuron in
rder to make predictions on whether a given instance belongs
o the positive or negative class in terms of the smell under
nvestigation. The layer uses the sigmoid activation function in
rder to produce a probability within the range of 0 to 1.
We use dynamic batch size depending upon the size of sam-

les to train. We divide the training sample size by 512 and use
he result as the index to choose one of the items in the possible
atch size array (32, 64, 128, 256). For instance, we use 32 as
atch size when the training sample size is 500 and 256 when
he training sample size is 2000.

The hyper-parameters are set to different values in order to

xperiment with different configurations of the model. Table 3

http://www.tusharma.in/smells


T. Sharma, V. Efstathiou, P. Louridas et al. The Journal of Systems & Software 176 (2021) 110936

T
C

c
s
p
t
h
l
1
t
5
t
f

v

f

p
a
w
w
f
m
t
e

Fig. 3. Architecture of the employed cnn models.

able 3
hosen values of hyper-parameters for the cnn model.
Hyper-parameter Values

Filters in convolution layer {8, 16, 32, 64}
Kernel size in convolution layer {5, 7, 11}
Pooling window size in max pooling layer {2, 3, 4, 5}
Maximum epochs {50}

lists all the different values chosen for the hyper-parameters.
Filters is the number of convolutional filters employed, kernel size
ontrols the size of the convolution window, and pooling window
ize governs the size of the down-sampling window during the
ooling operation. We execute cnn models for 144 configurations
hat result from generating combinations of different values of
yper-parameters and number of repetitions of the set of hidden
ayers (4×3×4×3 = 144). We label each configuration between
and 144 where configuration 1 refers to number of repetitions of

he set of hidden layers = 1, number of filters = 8, kernel size =

, and pooling window size = 2. Similarly, configuration 144 refers
o number of repetitions of the set of hidden layers = 3, number of
ilters = 64, kernel size = 11, and pooling window size = 5. Both
the 1d and 2d variants use the same architecture replacing the 2d
ersion of Keras layers for their 1d counterparts.
We ensure the best attainable performance and avoid over-

itting by using early stopping.5 as a regularization method. This
implies that even though the model is allowed to reach a prede-
termined maximum of 50 epochs during training, it may be forced
to stop earlier. If there is no improvement in the validation loss
of the trained model for five consecutive epochs (since patience,
a parameter to early stopping mechanism, is set to five), the
training is interrupted. Along with this, we also use model check
oint to restore the best weights of the trained model. We chose
maximum of 50 after carrying out a preliminary experiment
hich indicated that the majority of models would converge
ithin this threshold. Among 386 total individual experiments

or all four smells in RQ1 for cnn-1d, the models reached the
aximum epoch only four times. In those cases, we stop the

raining and evaluate the model based on the weights at the last
poch.

5 https://keras.io/callbacks/.
10
Fig. 4. Architecture of the employed rnn models.

For each experiment, we compute the following performance
metrics: precision, recall, f1 score, and average precision score.
We also record the actual epoch count where the models stopped
training (due to early stopping). After we complete all the ex-
periments with all the chosen hyper-parameters, we choose the
best performing configuration and the corresponding number of
epochs used by the experiment and retrain the model and record
the final and best performance of the model.

4.4.2. rnn model
Fig. 4 presents the architecture of the employed rnn model

which is inspired by state-of-the-art models in natural language
modeling that employ an lstm network as a recurrent layer (Sun-
dermeyer et al., 2012). The model consists of an embedding layer
followed by the feature learning part — a hidden lstm layer. It is
succeeded by the regularization (realized by a dropout layer) and
classification (consisting of a dense layer) part.

The embedding layer maps discrete tokens into compact dense
vector representations. One of the advantages of the lstm net-
works is that they can effectively handle sequences of varying
lengths. To this end, in order to avoid the noise produced by the
padded zeros in the input array, we set the mask_zero parameter
to True in the Keras embedding layer. Thus the padding is ignored
and only the meaningful part of the input data is taken into
account. We set dropout and recurrent_dropout parameters of
lstm layer to 0.1. The regular dropouts mask (or drop) network
units at inputs and/or outputs whereas recurrent dropouts drop
the connections between the recurrent units along with dropping
units at inputs and/or outputs (Gal and Ghahramani, 2015). The
output from the embedding layer is fed into the lstm layer, which
in turn outputs to the dropout layer. As in the case of the cnn
model, we experiment for different depths of the rnn model by
repeating multiple instances of the hidden layer.

The dropout layer uses a dropout rate equal to 0.2, which
we empirically found effective for preventing over-training, yet
conservative enough for avoiding under-training. The dense layer,
which comprises the classification output layer, is configured
with one unit and sigmoid activation as in the case of the cnn
model. Similarly to the cnn model, we use early stopping (with
maximum epochs = 50 and patience = 2) and model check
point callbacks. Also, we use the dynamic batch size selection as
explained in the previous section.

We try different values for the model hyper-parameters;
Table 4 lists the values selected for experimentation. The di-
mensionality of the embedding layer represents the size of each
embedding vector; lstm units is the number of units in each
lstm layer. We measure the performance of the rnn model in
18 configurations by forming the combinations produced by the
different chosen values of hyper-parameters and the number of
repetitions of the hidden lstm layer (2 × 3 × 3 = 18).

https://keras.io/callbacks/


T. Sharma, V. Efstathiou, P. Louridas et al. The Journal of Systems & Software 176 (2021) 110936

T
C

p
t

4

r
d
p
o
i
r
p
c
o
s
2

l
a
p
a
c
i
t
b
b
r
f
l
l

o
w
a
m
i
t
m
r
a
t
s
t
n
c
e
o
d
i
i

c
a
c
T
w
b

able 4
hosen values of hyper-parameters for the rnn model.
Hyper-parameter Values

Dimensionality of embedding layer {16, 32}
lstm units {32, 64, 128}
Maximum epochs {50}

As described earlier, we pick the best performing hyper-
arameters and number of epochs and retrain the model to obtain
he final and best performance of the model.

.4.3. Autoencoder model
Autoencoders are neural networks that can learn meaningful

epresentations of the data in an unsupervised way. There exist
iverse variants of autoencoders, however, in practice the pur-
ose of all variants is to learn to reconstruct a representative copy
f the given input. To this end, a bottleneck-like part between the
nput and the output layers encodes the input in a compressed
epresentation which is in turn decompressed by a decoding
art. The underlying principle is that the encoded representation
aptures salient features which are reflected in the reconstructed
utput and discards other, less important, thus providing dimen-
ionality reduction and de-noising capabilities (Vincent et al.,
008).
A typical autoencoder model has essentially two sets of

ayers – encoding and decoding layers – symmetrically built
cross the compression pipeline. The model produces an ap-
roximate, compressed representation of the input, which then
ttempts to reconstruct with some loss L. In its simplest ar-
hitectures an autoencoder consists of dense layers where the
nput is compressed by limiting the number of units in the in-
ermediate hidden layers. Compression can also be implemented
y imposing sparsity constraints on the hidden units that are
eing activated (Ng et al., 2011); this is effectuated by some
egularization technique that adds a penalty term to the loss
unction. Besides autoencoder models implemented with dense
ayers, more complex architectures involve rnn and cnn hidden
ayers.

In the context of smell detection we experiment with a variety
f autoencoder architectures, ranging from simple models built
ith dense layers, to more sophisticated models involving rnn
nd cnn hidden layers. We build the simple sparse autoencoder
odels with dense layers where we reduce the number of units

n the intermediate layers and penalize the loss function through
he L1-regularization procedure (Park and Hastie, 2007). We build
ore complex models by interpolating lstm or cnn layers with

educed dimensions between the input and the output. We use
ll variants of the autoencoders as classifiers of anomalies. We
rain the models to learn to represent patterns of non-smelly
amples by using only negative (i.e., non-smelly) examples. We
est the trained models on data that include both positive and
egative samples. We use the reconstruction loss as a proxy for
lassifying an instance as smelly (Japkowicz et al., 1995; Hawkins
t al., 2002; Williams et al., 2002). If for some instance the
utput of the model shows high loss, we accept that this example
oes not follow the pattern learnt by the model, which in turn
mplies classification of a positive instance of the smell under
nvestigation.

As Fig. 5 shows, we have employed three variants of autoen-
oder models; the first variant uses dense, the second uses rnn,
nd the last variant mainly uses cnn-1d layers as the fundamental
omponent that forms the model’s encoder and decoder layers.
he convolution variant uses max pooling and upsampling layers
ith convolution layers in encoder and decoder respectively. Ta-
le 5 lists the hyper-parameters used for the autoencoder model.
11
Table 5
Chosen values of hyper-parameters for the Autoencoder model.
Hyper-parameter Values

Number of units (Dense) {256, 512, 1024}
lstm units {8, 16, 32}
Filters in convolution layer {8, 16, 32, 64}
Kernel size in convolution layer {5, 7, 11}
Pooling window size in max pooling {2, 3, 4, 5}
and upsampling layer
Epochs {20}

The number of units in the dense layer is the dimension of the
output space of the layer, lstm units is the number of units in
each lstm layer, and filters in the convolution layer is the number
of convolutional filters applied. Kernel size controls the size of the
convolution window, and pooling window size governs the size
of down/up-sampling window during the pooling operation. For
lstm layers, we set the values of dropout and recurrent_dropout
to 0.1. The encoder and decoder layers are followed by a fully-
connected dense layer. Once the training is complete, we find
out the optimal performance of the trained autoencoder model by
evaluating the performance at different values of the threshold.

4.5. Hardware specification

We perform all the experiments on the super-computing facil-
ity offered by grnet (Greek Research and Technology Network).
The experiments were run on gpu nodes (8x NVidia V100). Each
gpu incorporates 5120 cuda cores. We requested 1 gpu node with
64 gb of memory for most of the experiments while submitting
the job to the super computing facility. Some rnn experiments
require more memory to perform the training; we requested 128
gb of memory for these.

5. Results and discussion

As elaborated in this section, we found that it is feasible
to detect smells using deep learning models without extensive
feature engineering. Our results also indicate that performance
of deep learning models is highly smell-specific. Furthermore, we
found that it is feasible to apply transfer-learning in the context
of code smells detection. In the rest of the section, we discuss the
results in detail.

5.1. Results of RQ1

RQ1 Is it possible to detect code smells using deep learning
methods? If yes, which deep learning method performs
superior?

5.1.1. Approach
We prepare the input samples as described in Section 4.2.

Table 6 presents the number of positive and negative samples
used for each smell for training and evaluation; cnn-1d, rnn, and
ae use 1d samples and cnn-2d uses 2d samples. As mentioned
earlier, we train our models with the same number of positive
and negative samples (except in the case of ae where we use only
negative samples to train the model). The one-dimensional sam-
ple counts are different from their two-dimensional counterparts
because we apply additional constraint for outlier exclusion, on
permissible height, in addition to the width.



T. Sharma, V. Efstathiou, P. Louridas et al. The Journal of Systems & Software 176 (2021) 110936

T
N
f

e
e
f
a
p
l
t
d
t
a

w
t
f
d
S
d
a

p
a
m
t
s
p
t
s
e

h

Fig. 5. Architecture of the employed Autoencoder models.
able 6
umber of positive (P) and negative (N) samples used for training and evaluation
or RQ1.

cnn-1d, rnn, and ae cnn-2d

Training Evaluation Training Evaluation

p and n p n p and n p n

cm 5000 7489 139,460 5000 5822 125,807
cc 4330 1856 145,437 3374 1446 129,933
fe 1260 528 50,000 1194 512 38,963
ma 205 85 50,000 189 82 39,071

5.1.2. Results
Fig. 6 presents the performance (i.e., f1 score) of the mod-

ls for the considered smells for all the configurations that we
xperimented with. The results from each model show that per-
ormance of the models varies depending on the smell under
nalysis. Another observation from the trendlines shown in the
lots is that performance of all the models remains more or
ess stable and unchanged for different configurations except for
he rnn model with the complex method smell. This implies that
espite the variability in the combinations of hyper-parameters
hat we experimented with, the effect on the particular models
ppears to be minor.
Table 7 presents the results of Mann–Whitney U test that

e perform to ensure that each model performs differently than
he other models. We also compute Hedges’ g (Becker, 2000) to
igure out the effect size of the difference between each pair of
eep learning models. Hedges’ g is similar to Cohen’s d (Yao and
hepperd, 2020) except the Hedges’ metric takes into account
ifferent sample sizes. The results in the Table show that almost
ll the model pairs are different and their effect size is significant.
Fig. 7 presents the box plots comparing for each smell, the

erformance of all trained models, under all configurations. For
ll the analyzed smells, autoencoders outperform all of the other
odels. The f1 score values produced by all three variants of

he autoencoder model are highly concentrated. The figure also
hows that the variations in hyper-parameters do not affect the
erformance of the chosen autoencoder model. We also observe
hat the performance of individual model architectures vary from
mell to smell; for instance, rnn shows small variance for feature
nvy smell but quite large for complex method smell.
Equipped with experiment results, we attempt to validate the

ypotheses. We present precision, recall, and f1 score to show the
12
performance of the analyzed deep learning models. We attempt
to validate each of the addressed hypotheses in the rest of the
section.

RQ1.H1: It is feasible to detect code smells using deep learning
methods.

Table 8 lists performance metrics (precision, recall, f1 score,
mcc (Matthews Correlation Coefficient)) for the optimal configu-
ration for each smell, comparing all four deep learning models.
We present mcc also along with other accuracy metrics because
mcc covers true negative instances as well which is not covered
by the f1 score (Yao and Shepperd, 2020). The table also lists the
hyper-parameters associated with the optimal configuration for
each smell. Fig. 8 presents the performance (f1 score) of the deep
learning models corresponding to each smell considered in this
exploration. We use fully-connected neural network variant for
ae in this experiment.

As regards implementation smells, for the complex method
smell, even though autoencoders and rnn perform superior than
the convolution models, the performance of all models under
consideration is comparable. On the other hand, none of the
models could identify complex conditional smell with a reasonable
accuracy. This implies that the models could identify a smell
that is exhibited through the structure of a method but could
not successfully spot the smell characterized by micro-structure
representing the conditional statements.

The autoencoder models with a simple dense layer (two
for feature envy smell) perform superior compared to
more complex models based on cnn and rnn.

Both of the design smells—feature envy and multifaceted ab-
straction—are non-trivial smells. Their detection requires analysis
of method interactions to observe respectively coupling of a
method with other classes, and incohesiveness of a class. For
feature envy, autoencoders perform better than the other models;
however, for multifaceted abstraction none of the employed deep
learning models could capture the complex characteristics of
the smell, implying that the token-level representation of the
data may not be appropriate for capturing higher-level features
required for detecting the smell.



T. Sharma, V. Efstathiou, P. Louridas et al. The Journal of Systems & Software 176 (2021) 110936

d

Fig. 6. Scatter plots of the performance (f1 score) exhibited by the considered deep learning models along with their corresponding trendline.
Table 7
Results of Mann–Whitney U test and Hedges’ g effect size between the f1 values for all configurations of each considered model.

cnn-2d rnn ae

CM
cnn-1d p = 0.972, g = −0.015 p = 0.001, g = 1.60 p = 4.33e−05, g = −7.12
cnn-2d – p = 0.001975, g = 1.62 p = 4.336e−05, g = −7.52
rnn – – p = 7.7e−6, g = −2.09

CC
cnn-1d p < 2.2e-16, g = −2.34 p = 0.01, g = 0.84 p = 4.33e−05, g = −11.96
cnn-2d – p = 2.58e−08, g = 3.55 p = 4.33e−05, g = −11.86
rnn – – p = 7.7e−6, g = −15.13

FE
cnn-1d p < 2.2e-16, g = −1.56 p = 0.002, g = 0.8 p = 4.31e−05, g = −8.03
cnn-2d – p = 1.54e−06, g = 2.03 p = 4.33e−05, g = −4.57
rnn – – p = 7.7e−6, g = −24.08

MA
cnn-1d p = 4.77e−13, g = 1.07 p = 4.45e−06, g = 1.32 p = 6.07e−05, g = −4.97
cnn-2d – p = 2.74e−06, g = 4.23 p = 4.33e−05, g = −63.98
rnn – – p = 2.62e−4, g = −27.94
It is evident from the above discussion that the hypothe-
sis exploring the feasibility of detecting smells using deep
learning models holds true; however, the performance of
the employed models differ significantly depending upon
the smells.

RQ1.H2: cnn-2d performs better than cnn-1d in the context of
etecting smells.
Table 8 shows that the performance of cnn-1d and cnn-2d is

comparable for complex method and feature envy smells. For com-
plex conditional smell, cnn-2d does better than cnn-1d; probably
13
due to a complex conditional statement contributes to a longer
statement and cnn-2d could better identify it compared to cnn-1d
using its 1-d form. Neither of the models could detect multifaceted
abstraction smell instances. In summary, there is not sufficient
evidence to conclude that cnn-2d is a superior model compared
to cnn-1d.

Therefore, we reject the hypothesis that cnn-2d performs
overall better than cnn-1d as none of the models is clearly
superior to another in all the cases.



T. Sharma, V. Efstathiou, P. Louridas et al. The Journal of Systems & Software 176 (2021) 110936

o

o

2
w
t

Fig. 7. Box plots of the performance (f1 score) exhibited by the considered deep learning models for all the four smells.
Table 8
Performance (Precision, Recall, f1 score, mcc (Matthews Correlation Coefficient)) of all four models with configuration corresponding to the optimal performance. l:
deep learning layers; f: number of filters; k: kernel size; mpw: maximum pooling window size; ed: embedding dimension; lstm: number of lstm units; e: number
f epochs; u: number of units; t: threshold.

Smell Performance Configuration

p r f1 mcc l f k mpw ed lstm e u t

cnn-1d

cm 0.46 0.60 0.52 0.54 2 32 5 4 – – 15 – –
cc 0.04 0.68 0.08 0.09 1 32 5 4 – – 15 – –
fe 0.03 0.69 0.06 0.07 1 8 11 2 – – 31 – –
ma 0.01 0.98 0.02 0.02 1 16 11 2 – – 5 – –

cnn-2d

cm 0.40 0.81 0.54 0.58 1 64 11 5 – – 36 – –
cc 0.07 0.60 0.13 0.14 2 64 7 2 – – 22 – –
fe 0.05 0.77 0.09 0.10 2 16 5 3 – – 14 – –
ma 0.01 0.92 0.02 0.02 2 64 11 2 – – 6 – –

rnn

cm 0.61 0.66 0.63 0.67 1 – – – 32 64 24 – –
cc 0.04 0.65 0.08 0.10 1 – – – 32 64 3 – –
fe 0.01 0.85 0.02 0.02 2 – – – 16 64 16 – –
ma 0.00 0.07 0.01 0.01 2 – – – 16 128 11 – –

ae

cm 0.60 0.68 0.64 0.67 1 – – – – – 20 32 319,000
cc 0.20 0.20 0.20 0.21 1 – – – – – 20 16 328,000
fe 0.18 0.24 0.21 0.22 2 – – – – – 20 16 325,000
ma 0.03 0.14 0.05 0.06 1 – – – – – 20 16 328,000
RQ1.H3: rnn models perform better than cnn models in the context
f detecting smells.
Table 9 presents the comparison of rnn with cnn-1d and cnn-

d by comparing pairwise f1 measure differences in percentages,
here the f1 score values are obtained by the optimal configura-
ion in each case. Here, the performance difference in percentage
 f

14
is calculated by

F1RNN − F1CNN

F1RNN × 100

The rnn performs better for complex method smell against both
convolution models. For complex conditional smell, cnn-2d per-
orms better than both cnn-1d and rnn probably due to 2-d



T. Sharma, V. Efstathiou, P. Louridas et al. The Journal of Systems & Software 176 (2021) 110936

T
P

t
b
s
e
m

t
b
t

t
m
t
t
p
a
f

Fig. 8. Comparative performance of the deep learning models for each considered smell.
able 9
erformance (f1 score) comparison of rnn with cnn-1d and cnn-2d.
Smell rnn vs. cnn-1d rnn vs. cnn-2d

cm 16.71% 16.25%
cc 13.38% −86.31%
fe −153.57% −159.62%
ma −31.16% 9.65%

input samples could better represent the complex nature of con-
ditional statements compared to its 1-d input form. However,
he performance of rnn is lower for feature envy compared to
oth convolution models. Also, for complex conditional smell, rnn
hows poorer performance compared to cnn-2d. To detect feature
nvy smell, it is required to identify complex relationships among
ethods and data members which rnn could not grasp.

The analysis suggests that performance of the deep learn-
ing models is smell-specific. Therefore, we reject the
hypothesis that rnn models perform better than cnn
models for all considered smells.

RQ1.H4: rnn and cnn variants of autoencoder model exhibit com-
parable performance to those of rnn and cnn-1d models.

For complex method, rnn performs better than cnn-1d (refer
o Fig. 8); however, within autoencoder model, cnn-1d is slightly
etter than rnn variant. Similarly, cnn-1d does better compared
o rnn for feature envy smell but cnn-1d and rnn variants of
autoencoder model show same performance. On the other hand,
for complex conditional smell, rnn and cnn-1d both show similar
performance in both configurations (see Fig. 9).

With this comparison, it is evident that rnn and cnn-
1d variants of autoencoder model do not exhibit similar
performance pattern as shown by individual rnn and
cnn-1d models.

5.1.3. Implications
This is the first attempt in the software engineering literature

o show the feasibility of detecting smells using deep learning
odels from the tokenized source code without extensive fea-

ure engineering. It may motivate researchers and developers
o explore this direction and build over it. For instance, context
lays an important role in deciding whether a reported smell is
ctually a quality issue for the development team. One of the
uture works that the community may explore is to combine
15
the models trained using samples classified by the existing smell
detection tools with the developer’s feedback to identify more
relevant smells considering the context.

Our results show that, even though both convolution meth-
ods perform superior for specific smells, their performance is
comparable for each smell. This implies that we may use one-
dimensional or two-dimensional cnn interchangeably without
compromising the performance significantly.

Apart from experimenting with cnn and rnn-based models
in various configurations, we also considered autoencoder. The
autoencoder model treats a smells as a rare event; a simple
autoencoder with one mid dense layer performs equally well
with the more complex and deeper autoencoder configurations
and better than the rnn and cnn based models. This observa-
tion provides grounds for further investigation, encouraging the
software engineering community to propose simpler models for
smell detection.

The comparative results on applying diverse deep learning
models for detecting different types of smells suggest that a
model is highly dependent on the kind of smells that it is trying
to classify. This result could attract efforts from the software
engineering community to develop smell-specific smell detection
deep learning models.

5.2. Results of RQ2

RQ2 Is it possible to detect code smells by applying transfer-
learning techniques on similar languages? If yes, which
deep learning model exhibits superior performance in
detecting smells when applied in transfer-learning set-
ting?

5.2.1. Approach
In the case of direct-learning, the training and evaluation

samples belong to the same programming language whereas in
the transfer-learning case, the training and evaluation samples
come from two similar but different programming languages. This
research question examines the feasibility of applying transfer-
learning i.e., train neural networks by using C# samples and
employ the trained model to classify code fragments written in
Java.

For the transfer-learning experiment (referred to as TL) we
keep the training samples exactly the same as the ones we
used in RQ1. For evaluation, we download repositories containing
Java source code and preprocess the samples as described in
Section 4.2. Similar to RQ1, evaluation is performed on a realistic
scenario, i.e., we use all the positive and negative samples from
the selected repositories and when enforcing maximum limit to



T. Sharma, V. Efstathiou, P. Louridas et al. The Journal of Systems & Software 176 (2021) 110936

T
P
f

l
t
s
m
d
f
a
q
J

R

c
b
f
c
b
6

Fig. 9. Comparative performance of variants of autoencoder models for each considered smell.
r

i
t
m
f
c
p

i
o
W
i
o
a

N

able 10
ositive (P) and negative (N) number of samples used for training and evaluation
or RQ2.

cnn-1d, rnn, and ae cnn-2d

Training Evaluation Training Evaluation

p and n p n p and n p n

cm 5000 10,244 150,000 5000 5818 150,000
cc 4329 3,440 150,000 3374 2724 150,000
fe 1260 613 50,000 1194 682 50,000
ma 205 148 50,000 189 158 50,000

samples we maintain the original ratio between positive and neg-
ative samples. This arrangement ensures that the models would
perform as reported if employed in a real-world application.
Table 10 shows the number of samples used for training and
evaluation for this research question.

5.2.2. Results
As an overview, Fig. 10 shows the scatter plots for each deep

earning model comparing the performance (f1 score) of both
he direct-learning and transfer-learning for all the considered
mells for all the configurations. These plots outline the perfor-
ance exhibited by the models in both cases with trend lines
istinguishing the compared series. The plots imply that the per-
ormance of the models are comparable in the transfer-learning
nd direct-learning cases. In the rest of the section, we report
uantitative results on applying transfer learning between C# and
ava.

Q2.H1: It is feasible to detect code smells by applying transfer-
learning techniques on similar languages.

Table 11 presents the performance of the models for all the
onsidered smells demonstrating strong evidence on the feasi-
ility of applying transfer-learning for smell detection. The per-
ormance pattern is in alignment to that in the direct-learning
ase; Spearman correlation between the performance produced
y direct-learning and transfer-learning is 0.88 (with p-value =

.56 × 10−6).

Therefore, we accept the hypothesis that transfer-
learning is feasible in the context of code smells
detection.

Fig. 11 presents a comparison among the performance (i.e., f1
score) exhibited by all the considered deep learning models for
each considered smell. Interestingly, cnn-2d performs superior to
the rest of the models for all smells except feature envy; for feature
16
envy smell, ae performs best. As indicated above, in general, the
performance of the models follows a similar trend with the one
observed in the case of direct-learning in RQ1.

RQ2.H2: The performance of transfer-learning is inferior compared
to that of direct-learning.

Fig. 12 compares the performance of the models at their
optimal configurations applied in transfer-learning and in direct-
learning. We observe that, in the majority of cases, direct-learning
performs better than the corresponding transfer-learning models.
The exceptions are convolution models for complex conditional,
nn for feature envy, cnn-2d and ae for multifaceted abstraction

smell, where transfer-learning shows better results.
We perform an additional experiment (referred to as TLreverse)

n which we reverse the direction of transfer-learning i.e., we
rain the models using Java samples and evaluate the trained
odels on C# samples. We download Java repositories and per-

orm the data curation operations mentioned in Section 4.2 to
ompile a set of training and evaluation samples. Table 12
resents the number of samples that are used for this experiment.
We perform the experiment using the optimal configuration

dentified earlier and presented in Table 11. We present the
btained results in Table 13 for all the models with all the smells.
e observe that the performance of the models in tlreverse exper-

ment follows the similar pattern as we have seen in tl. We carry
ut Spearman correlation analysis between the performance of tl
nd tlreverse experiments. We found a strong correlation between

the two with ρ = 0.795 (p-value = 0.0002).
The ratio of positive and negative samples plays a signifi-

cant role in the performance of a deep-learning model (Nucci
et al., 2018; Pecorelli et al., 2020) and hence it is not easy to
compare the performance of models trained with heterogeneous
samples. We compute Normalized Performance Difference (npd)
to compare the performance of models from direct-learning to
transfer-learning. Normalized performance difference between
methods i and j is given by the following equation.

PD(i, j) =
F1i × Rj − F1j × Ri

Ri + Rj
(1)

Here, f1i and f1j represent the performance (i.e., f1 score)
and ri and rj refer to the ratio between negative and positive
samples of each method. Table 14 presents the comparison of
performance in the terms of both simple difference and nor-
malized difference. Simple performance difference (pd) shows
that transfer-learning performs inferior in the majority of in-
stances; however, the normalized performance difference (npd)
that scales the difference between performance proportionally in-
dicates that transfer-learning does not have inferior performance
compared to direct-learning.



T. Sharma, V. Efstathiou, P. Louridas et al. The Journal of Systems & Software 176 (2021) 110936

T
P
m

w
s
p
e
t
m

Fig. 10. Scatter plots for each model and each considered smell comparing f1 score of direct-learning and transfer-learning along with corresponding trend-lines.
able 11
erformance of all four models with configuration corresponding to the optimal performance. l: deep learning layers; f: number of filters; k: kernel size; mpw:
aximum pooling window size; ed: embedding dimension; lstm: number of lstm units; e: number of epochs; u: number of units; t: threshold.

Smell Performance Configuration

p r f1 l f k mpw ed lstm e u t

cnn-1d

cm 0.36 0.59 0.44 2 16 5 3 – – 17 – –
cc 0.08 0.18 0.11 2 32 7 2 – – 9 – –
fe 0.02 0.78 0.04 1 16 11 5 – – 49 – –
ma 0.01 0.78 0.01 1 64 11 5 – – 5 – –

cnn-2d

cm 0.36 0.82 0.50 1 16 11 4 – – 30 – –
cc 0.10 0.45 0.16 2 8 7 2 – – 19 – –
fe 0.03 0.37 0.06 2 16 7 3 – – 24 – –
ma 0.04 0.29 0.07 2 64 11 2 – – 17 – –

rnn

cm 0.31 0.57 0.40 1 – – – 16 32 5 – –
cc 0.07 0.55 0.13 1 – – – 32 32 4 – –
fe 0.03 0.64 0.06 1 – – – 32 128 10 – –
ma 0.01 0.02 0.01 1 – – – 32 128 9 – –

ae

cm 0.53 0.44 0.48 2 – – – – – 20 8 328,000
cc 0.09 0.23 0.13 1 – – – – – 20 8 328,000
fe 0.08 0.15 0.10 1 – – – – – 20 8 328,000
ma 0.03 0.20 0.06 1 – – – – – 20 8 328,000
Therefore, we reject the hypothesis that transfer-learning
performs inferior compared to direct-learning.

The above discussion leads to another interesting question:
hich deep learning model’s performance is the most or least sen-
itive to transfer-learning? We compute the npd between the
erformance pairs of direct-learning and transfer-learning for
ach considered model. Fig. 13 depicts the results; cnn-1d shows
he highest difference in performance and hence cnn-1d is the
ost sensitive model to transfer-learning in this experiment.
17
rnn on the other hand, shows the lowest difference in perfor-
mance which renders the model the least sensitive and, conse-
quently, the most robust for transfer-learning compared to the
other models of this experiment.

5.2.3. Implications
Our results demonstrate that it is feasible to apply transfer-

learning in the context of smell detection. Exploiting this ap-
proach can lead to a new category of smell detection tools,
specifically for the programming languages where no mature
smell detection tools are available.



T. Sharma, V. Efstathiou, P. Louridas et al. The Journal of Systems & Software 176 (2021) 110936
Fig. 11. Comparative performance of the deep learning models for each considered smell in transfer-learning settings.
Fig. 12. Comparison of performance of the deep learning models between direct-learning (DL) and transfer-learning (TL) settings.
Fig. 13. Difference in performance of the deep learning models and the sample
ratio for two transfer-learning tasks.
18
Table 12
Number of positive (P) and negative (N) samples used for training (Java samples)
and evaluation (C# samples).

cnn-1d and rnn cnn-2d

Training Evaluation Training Evaluation

p and n p n p and n p n

cm 5000 7760 150,000 5000 7117 150,000
cc 5000 1843 150,000 5000 1669 150,000
fe 2183 496 50,000 1987 624 50,000
ma 545 82 50,000 483 105 50,000

5.3. Discussion

Although it is possible to detect some code smells using deep
learning models, the presented method is by no means universal,
and the outcome is sensitive to the training set composition and
the training time. In the rest of the section, we elaborate on these
observations emerging from the presented results.



T. Sharma, V. Efstathiou, P. Louridas et al. The Journal of Systems & Software 176 (2021) 110936

T
P

a
t
f
r
a

m
c
s

able 13
erformance of all four models with configuration corresponding to the optimal performance in tlreverse experiment. l: deep learning layers; f: number of filters; k:

kernel size; mpw: maximum pooling window size; ed: embedding dimension; lstm: number of lstm units; e: number of epochs; u: number of units; t: threshold.
Smell Performance Configuration

p r f1 l f k mpw ed lstm e u t

cnn-1d

cm 0.06 0.87 0.11 2 16 5 3 – – 17 – –
cc 0.03 0.69 0.05 2 32 7 2 – – 9 – –
fe 0.02 0.83 0.04 1 16 11 5 – – 49 – –
ma 0.00 1.00 0.01 1 64 11 5 – – 5 – –

cnn-2d

cm 0.28 0.93 0.43 1 16 11 4 – – 30 – –
cc 0.01 0.93 0.03 2 8 7 2 – – 19 – –
fe 0.03 0.73 0.06 2 16 7 3 – – 24 – –
ma 0.01 0.18 0.01 2 64 11 2 – – 17 – –

rnn

cm 0.37 0.40 0.38 1 – – – 16 32 5 – –
cc 0.05 0.02 0.03 1 – – – 32 32 4 – –
fe 0.02 0.92 0.04 1 – – – 32 128 10 – –
ma 0.00 0.11 0.01 1 – – – 32 128 9 – –

ae

cm 0.42 0.43 0.43 2 – – – – – 20 8 328,000
cc 0.06 0.26 0.09 1 – – – – – 20 8 328,000
fe 0.04 0.35 0.07 1 – – – – – 20 8 328,000
ma 0.01 0.22 0.01 1 – – – – – 20 8 328,000
Table 14
Comparison of performance of transfer-learning with direct-learning. Here, dl
nd tl refer to performance of deep learning models in direct-learning and
ransfer-learning respectively. pd and npd refer to simple and normalized per-
ormance difference between direct-learning and transfer-learning respectively.
DL and rTL refer to the ratio of negative to positive samples for direct-learning
nd transfer-learning respectively.

Smell dl tl pd rDL rTL npd

cnn-1d

cm 0.52 0.44 0.08 18.62 14.64 −0.02
cc 0.07 0.11 −0.04 78.36 43.60 −0.05
fe 0.07 0.04 0.03 94.70 81.57 0.01
ma 0.01 0.01 0 588.24 337.84 0.00

cnn-2d

cm 0.53 0.5 0.03 21.61 25.78 0.06
cc 0.15 0.16 −0.01 89.86 55.07 −0.04
fe 0.07 0.06 0.01 76.10 73.31 0.00
ma 0.01 0.07 −0.06 476.48 316.46 −0.04

rnn

cm 0.63 0.4 0.23 18.62 14.64 0.05
cc 0.08 0.06 0.02 78.36 43.60 −0.01
fe 0.03 0.06 −0.03 94.70 81.57 −0.02
ma 0.01 0.01 0 588.24 337.84 0.00

ae

cm 0.64 0.48 0.16 18.62 14.64 0.01
cc 0.21 0.13 0.08 78.36 43.60 −0.01
fe 0.21 0.1 0.11 94.70 81.57 0.04
ma 0.04 0.06 −0.02 588.24 337.84 −0.02

5.3.1. Is there a silver-bullet?
In practical setting one would want to employ a universal

odel architecture that performs consistently well for all the
onsidered smells; this would make the implementation of tools
impler.
rnn has the reputation to perform well with textual data and

sequential patterns while cnn is considered good for imaging
data and visual patterns. Given the similarity of source code and
natural language, it is expected to obtain good performance from
rnn. Our results show that rnn outperforms both cnn models
in the cases of complex method; however, it does not live up to
its reputation for other smells. ae is considered to be a good
mechanism for learning to create copies of a given input where
the key features are maintained; we observed that it works con-
siderably well compared to other considered models. We have
a uniform architecture for each model and we observed that the
performance of the model differs significantly for different smells.
It suggests that it is non-trivial, if not impossible, to propose a
universal model architecture that works for all smells. Each smell
exhibits diverse distinctive features and hence their detection
mechanisms differ significantly. Therefore, given the nature of the

problem, it is unlikely that one universal model architecture will

19
be the silver-bullet for the detection of a wide range of smells
with consistently good performance.

5.3.2. Performance comparison with baseline
A comparison with existing methods and tools is expected

from a study proposing a new method. However, it is not fea-
sible to compare the results presented in this paper with other
attempts that use machine learning for smell detection (Khomh
et al., 2009, 2011; Maiga et al., 2012b,a; Bryton et al., 2010;
Barbez et al., 2019; Fontana et al., 2016) due to the following
reasons. First, the replication packages of the related attempts
are not available. Second, for most of the existing attempts, the
ratio of positive and negative evaluation samples is not known;
in the absence of this information, we cannot compare them
with our results fairly since the ratio plays an important role in
the performance of machine learning models. Furthermore, the
existing approaches compute metrics and feed them to machine
learning models as features. Models that only use metrics as the
features can be as good as the metrics themselves. Metrics do not
incorporate the context and hence the machine learning models
based on the metrics do not exploit the power of machine learn-
ing because the models are used merely for selecting a threshold
for the input metrics to classify smelly code from non-smelly
code. This research attempts to move beyond the use of metrics as
the only data source to detect the smells and bring more context
sensitivity to the smell analysis. To the best of our knowledge,
this is the first attempt to detect smells without using metrics as
the features for the employed machine learning models. Due to
this reason, it would be unfair to compare any machine learning
model that uses metrics with the presented method. Also, it
would be unfair to machine-learning based methods if we feed
the raw tokenized source code as input because unlike deep
learning methods, machine learning algorithms (such as Bayesian
belief networks and support vector machines), treat each column
of input as a specific feature. This assumption will not hold if
tokenized source code is provided as input and the algorithms
will perform very poorly.

The above discussion indicates two additional aspects. First,
we, as software engineering community, need a manually vali-
dated gold-standard smells dataset for a wide range of smells.
This would make bench-marking and comparison among dif-
ferent smell detection methods easy. Second, though this study
shows that deep learning methods can grasp by themselves latent
features that are necessary to identify smells and paves the way
to make the smell detection more context sensitive, it is far from
the level where it can be compared head-to-head with existing



T. Sharma, V. Efstathiou, P. Louridas et al. The Journal of Systems & Software 176 (2021) 110936

T
C

b
b
f
f
t
e
t

t
r
p
b
‘
b
s

5

c
f
u
m
d
o
c
o
a
v
r
t
p
v
n
t
a
o
c

able 15
omparison of performance (Precision, Recall, and f1) with a random classifier (rc) following the training set frequencies or responding always indicating a smell.

Performance

Smell Our results rc (frequency) rc (all smells)

p r f1 p r f1 p r f1

cnn-1d

cm 0.48 0.58 0.52 0.05 0.50 0.09 0.05 1 0.09
cc 0.04 0.70 0.07 0.01 0.50 0.02 0.01 1 0.02
fe 0.03 0.69 0.07 0.01 0.50 0.02 0.01 1 0.02
ma 0.01 0.98 0.01 0.00 0.50 0.00 0.00 1 0.01

cnn-2d

cm 0.38 0.83 0.53 0.04 0.50 0.08 0.04 1 0.08
cc 0.08 0.60 0.15 0.01 0.50 0.02 0.01 1 0.02
fe 0.04 0.78 0.07 0.01 0.50 0.02 0.01 1 0.02
ma 0.0 0.94 0.01 0.00 0.50 0.00 0.00 1 0.00

rnn

cm 0.72 0.55 0.63 0.05 0.50 0.09 0.05 1 0.09
cc 0.04 0.65 0.08 0.01 0.50 0.02 0.01 1 0.02
fe 0.01 0.87 0.03 0.01 0.50 0.02 0.01 1 0.02
ma 0.0 0.06 0.01 0.00 0.50 0.00 0.00 1 0.01

ae

cm 0.61 0.67 0.64 0.05 0.50 0.09 0.05 1 0.09
cc 0.21 0.20 0.21 0.01 0.50 0.02 0.01 1 0.02
fe 0.18 0.24 0.21 0.01 0.50 0.02 0.01 1 0.02
ma 0.03 0.12 0.04 0.00 0.50 0.00 0.00 1 0.01
T
A

methods and surpass them in performance. In the future, we
would like to explore combining source code in tokenized form
with more refined features to help deep learning methods classify
the smelly code with superior performance.

We compare our results with the results obtained from two
aseline random classifiers that do not really learn from the data
ut use only the distribution of smells in the training set to
orm their predictions. Table 15 presents the comparison. The
irst random classifier generates predictions by following the
raining set’s class distribution: that is, for every sample in the
valuation set it predicts whether it is a smell or not based on
he frequency of smells in the training data. We did that for
both balanced and imbalanced evaluation samples to mimic the
learning process of the actual experiment. In the middle three
columns, referred to as ‘‘rc (frequency)’’, of the table we show
he results for the balanced setting, as they were better than the
esults for the imbalanced setting. The second random classifier
redicts that a smell is always present; this gives perfect recall,
ut low precision, as observed in the columns corresponding to
‘rc (all smells)’’ of the table. Overall, our models perform far
etter than a random classifier for all but multifaceted abstraction
mell for both baseline variants.

.3.3. Poor performance in detecting design smells
The presented neural networks perform very poorly when it

omes to detecting the design smells feature envy and multi-
aceted abstraction. We infer the following two reasons for this
nder-performance. First, design smells such as feature envy and
ultifaceted abstraction are inherently difficult to spot unless a
eeper semantic analysis is performed. Specifically, in the case
f multifaceted abstraction, interactions among the methods of a
lass as well as the member fields have to be modeled in order to
bserve cohesion among the methods. This is a non-trivial aspect
nd the neural networks could not spot this aspect with the pro-
ided representation of the data. Therefore, we need to provide
efined information in the form of engineered features along with
he source code to help neural networks identify the inherent
atterns. Second, the number of positive training samples were
ery low, thus significantly restricting our training set. The low
umber severely impacts the ability of neural networks to infer
he responsible aspects that cause the smell. The future research
ttempts could address this limitation by increasing the number
f repositories under analysis or by adopting techniques such as
areful formation of artificial samples.
20
able 16
verage training-time taken by the models to train a single epoch in seconds.

cnn-1d cnn-2d rnn ae

cm 0.9 1.2 1155.5 3.8
cc 1.0 1.4 1575.9 3.3
fe 1.1 1.7 2284.6 3.5
ma 1.3 1.5 4997.7 2.6

5.3.4. Variation in training-time
As observed in the results section, performance of the con-

sidered deep-learning models varies depending upon the smells.
However, we also note that the models show considerable dif-
ference in the time consumed for training. We logged the time
taken by each experiment for the comparison. Table 16 presents
the average time taken by each model for each smell per epoch.
The table shows that the rnn is consuming exorbitant amount of
time compared to cnn and autoencoders. In the context of this
study, this implies that if the performance of an rnn for a given
task is comparable to that of a cnn or an autoencoder model,
one should decline the rnn-based solution for significantly faster
training time.

5.3.5. Exploring other source code representations
In the recent times, we have witnessed a surge in the research

towards alternative source code representations. The thriving
progress on code mining research and specifically the increasing
interest on problems pertinent to semantic code search has re-
cently led to novel code-specific representations that incorporate
structural features of a program (Allamanis et al., 2017; Alon
et al., 2019, 2018). Such representations have been proven to
perform well on the task they are tailored for, that is, learning
semantics of specific source code fragments. Even though the
afore-mentioned representations have been proven effective for
capturing the semantics of programs, their generalizability to
other code mining downstream tasks is questionable (Kang et al.,
2019). In our study we aimed to address the problem of training
models that capture qualitative characteristics in code. These are
mostly manifest through syntactic features in the case of imple-
mentation smells and through class-specific method interaction
in the case of design smells. Consequently, smell detection is
agnostic to the semantics of the program under investigation.
However, as a reference point we carried out an experiment using
the current mainstream method for code representation, that is,
code2vec.



T. Sharma, V. Efstathiou, P. Louridas et al. The Journal of Systems & Software 176 (2021) 110936

c
c
t
t
c
o
i
i
s
o
w

s
m
a
s
s
t
t
=

(
T
s
T
m
t
i

5

d
s
t
c
l

t
d
d
i
i
t
t
i
t
t

o
d
l
t

o
i
d
s
t

s
t
m

i
a

a
b
t
h
a
e

We used the implementation provided by the authors of
ode2vec6 and modified it to suit our context. The original
ode2vec implementation is tightly coupled with the problem
hat its authors address and hence it was a non-trivial challenge
o customize it to the needs of our classification problem. We
hanged the implementation to predict the presence or absence
f smells by customizing the training of the code2vec model. Dur-
ng the training, we replaced the method names (as in the original
mplementation) with either true or false based on whether a
mell is present or not. The trained model then predicted true
r false indicating the presence or absence. The implementation
e used can be found online.7
We preprocess and train the code2vec model using the same

et of samples in the same number that we used for training all
odels, for the two implementation smells, i.e., complex method
nd complex conditional. Given that the code2vec model is de-
igned to work at the method level, we did not use it for design
mells that require class-level treatment. We run the model with
he default parameters as proposed in the original implementa-
ion. The model performed mediocre with f1 = 0.22 (precision

0.16 and recall = 0.35) for complex method and f1 = 0.06
precision = 0.03 and recall = 0.26) for complex conditional smell.
his performance is significantly lower than the performance
hown by other models using simple source code tokenization.
his confirms our speculation on the suitability of the afore-
entioned models for smell detection and agrees with the finding

hat a state-of-the-art model for semantic representation of code
s not necessarily appropriate for downstream tasks.

.4. Opportunities

This study encourages the research community to explore
eep learning as a viable option for addressing the problem of
mell detection. We showed that the solution is applicable in
wo programming languages, namely C# and Java. This result en-
ourages further experimentation with additional programming
anguages of different paradigms.

We used the detection mechanisms of Designite for obtaining
he ground truth to train our models. Relying on a specific tool
oes not alleviate the fact that smells are indeed detectable using
eep learning methods—it rather provides grounds for general-
zation. A next step towards extending this work could be to
nvestigate variations of smell definitions and diverse tool adap-
ions by accordingly fine-tuning training. To this end, we release
he full pipeline of our deep learning toolkit and invite research
n this direction. We are positive that this work will prove robust
o extensions, given also the results that we obtained in the
ransfer-learning experiment.

We have shown that transfer-learning is feasible in the context
f code smells. This result additionally introduces new, data-
riven directions for automating smell detection which is particu-
arly useful for programming languages for which smell detection
ools are either not available or not matured.

Given that we did not consider the context and developers’
pinion on smells reported by deterministic tools, it would be
nteresting to combine these aspects either by considering the
evelopers’ opinion (by manually tagging the samples) while
egregating positive and negative samples or by designing models
hat take such opinions as an input to the model.

This work shows the feasibility of detecting implementation
mells; however, complex smells such as multifaceted abstrac-
ion and feature envy require further exploration and present
any open research challenges. Design and architecture smells

6 https://github.com/tech-srl/code2vec.
7 https://github.com/tushartushar/code2vec.
21
typically span across multiple source files and abstractions. Fur-
thermore, their detection involves identifying complex semantic
features that makes design and architecture smell detection using
machine learning methods difficult. The research community may
build on the results presented in this study and further explore
optimizations to the presented models, alternative models, or in-
novative model architectures to address the detection of complex
design and architecture smells.

Smell samples used for training and evaluation are highly
imbalanced naturally. We observed that in the best case it could
be 15 negative samples per positive sample while it may go
up to as skewed as 588 negative samples per positive sample
(refer to Table 14). Compared to other deep-learning models,
Autoencoders fit naturally in this context, because they are more
robust to class imbalance. We anticipate that future research
work would explore the potential of autoencoders in more detail.

Beyond smell detection, proposing an appropriate refactoring
to remove a smell is a non-trivial challenge. There have been
some attempts (Tsantalis et al., 2018; Biegel et al., 2011) to sepa-
rate refactoring changes from bug fixes and feature additions. One
may exploit the information produced from such tools and the
power of deep learning methods to construct tools that propose
suitable refactoring mechanism.

6. Threats to validity

Threats to the validity of our work mainly stem from possible
faults in the employed tools, our assumption concerning similar-
ity of both the programming languages, and generalizability and
repeatability of the presented results.

6.1. Construct validity

Construct validity measures the degree to which tools and
metrics actually measure the properties that they are supposed
to measure. It concerns the appropriateness of observations and
inferences made on the basis of measurements taken during the
study.

In the context of using deep learning techniques for smell
detection, we use Designite and DesigniteJava to detect smells
in C# and Java code respectively and use these results as the
ground truth. Relying on the outcome of two different tools
may pose a threat to validity especially in the case of transfer-
learning. To mitigate the risk, we make sure that both the tools
use exactly the same set of metrics, thresholds, and heuristics to
detect smells. Also, we ensure the smell detection similarity by
employing automated as well as manual testing.

To address potential threats posed by representational dis-
crepancies between the two languages we ensure that Tokenizer
generates same tokens for same or similar language constructs.
For instance, all the common reserved words are mapped to the
same integer token for both the programming languages.

6.2. Internal validity

Internal validity refers to the validity of the research findings. It
s primarily concerned with controlling the extraneous variables
nd external influences that may impact the outcome.
In the context of our investigation, exploring the feasibility of

pplying transfer-learning for smell detection, we assume that
oth programming languages are similar by paradigm, struc-
ure, and language constructs. It would be interesting to observe
ow two completely different programming languages (for ex-
mple, Java and Python) can be combined in a transfer-learning
xperiment.

https://github.com/tech-srl/code2vec
https://github.com/tushartushar/code2vec


T. Sharma, V. Efstathiou, P. Louridas et al. The Journal of Systems & Software 176 (2021) 110936

6

t
g
o
t
w
o

7

c
D
m
w
I
u

(
i

.3. External validity

External validity concerns generalizability and repeatability of
he produced results. The method presented in the study is pro-
ramming language agnostic and thus can be repeated for any
ther programming language given the availability of appropriate
ool-chain. To encourage the replication and building over this
ork, we have made all the tools, scripts, and data available
nline (Sharma, 2021).

. Conclusions

The interest in machine learning-based techniques for pro-
essing source code has gained momentum in the recent years.
espite existing attempts, the community has identified the im-
aturity of the discipline for source code processing, especially
hen it comes to identifying quality aspects such as code smells.

n this paper, we establish that deep learning methods can be
sed for smell detection. Specifically, we found that cnn, rnn,

and autoencoder deep learning models can be used for code smell
detection, though with varying performance. We did not find a
clearly superior method between 1d and 2d convolution neural
networks. Further, our results indicate that rnn performance
is not consistently better than convolutional networks. Our ex-
periment on applying transfer-learning proves the feasibility of
practicing transfer-learning in the context of smell detection.

With the results presented in the paper we encourage soft-
ware engineering researchers to build over our work as we iden-
tify ample opportunities for automating smell detection based on
deep learning models. There are grounds for extending this work
to a wider scope by including smells belonging to design and
architecture granularities. Furthermore, there exist opportunities
for further exploiting results and coupling with deep learning
methods for identifying suitable refactoring candidates. From the
practical side, the tool developers may induct the deep learning
methods for effective smell detection and use transfer-learning to
detect smells for programming languages where no appropriate
code smell detection tools are available.

CRediT authorship contribution statement

Tushar Sharma: Conceptualization, Software, Investigation,
Visualization, Writing - original draft. Vasiliki Efstathiou:
Methodology, Investigation, Visualization, Writing - review &
editing. Panos Louridas: Methodology, Software, Data curation,
Supervision, Writing - review & editing. Diomidis Spinellis:
Conceptualization, Methodology, Software, Supervision, Writing
- review & editing.

Declaration of competing interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgment

This work is partially funded by the seneca project, which is
part of the Marie Skłodowska-Curie Innovative Training Networks
(itn-eid) under grant agreement number 642954 and by the
crossminer project, which has received funding from the Euro-
pean Union’s Horizon 2020 Research and Innovation Programme
under grant agreement No. 732223.

We would like to thank Antonis Gkortzis, Theodore
Stassinopoulos, and Alexandra Chaniotakis for generously con-
tributing effort to our DesigniteJava project.

This work was supported by computational time granted from
the National Infrastructures for Research and Technology s.a.
grnet s.a.) in the National hpc facility — aris — under project
d pa180903-smellsdl.
22
References

Abdeljaber, O., Avci, O., Kiranyaz, S., Gabbouj, M., Inman, D.J., 2017. Real-
time vibration-based structural damage detection using one-dimensional
convolutional neural networks. J. Sound Vib. 388, 154–170.

Alexandru, C.V., Panichella, S., Gall, H.C., 2017. Replicating parser behavior
using neural machine translation. In: Proceedings of the 25th International
Conference on Program Comprehension. IEEE Press, pp. 316–319.

Allamanis, M., 2019. The adverse effects of code duplication in machine learning
models of code. In: Proceedings of the 2019 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on Programming
and Software, pp. 143–153.

Allamanis, M., Barr, E.T., Devanbu, P., Sutton, C., 2018. A survey of machine
learning for big code and naturalness. ACM Comput. Surv. 51 (4), 81.

Allamanis, M., Brockschmidt, M., Khademi, M., 2017. Learning to represent
programs with graphs. arXiv preprint arXiv:1711.00740.

Allamanis, M., Peng, H., Sutton, C., 2016. A convolutional attention network
for extreme summarization of source code. In: International Conference on
Machine Learning. pp. 2091–2100.

Alon, U., Brody, S., Levy, O., Yahav, E., 2018. Code2seq: Generating sequences
from structured representations of code. arXiv preprint arXiv:1808.01400.

Alon, U., Zilberstein, M., Levy, O., Yahav, E., 2019. Code2vec: Learning dis-
tributed representations of code. Proc. ACM Program. Lang 3 (POPL), [Online].
Available: https://doi.org/10.1145/3290353.

de Andrade, H.S., Almeida, E., Crnkovic, I., 2014. Architectural bad smells in
software product lines: An exploratory study. In: Proceedings of the WICSA
2014 Companion Volume. In: WICSA ’14 Companion, ACM, pp. 12:1–12:6.

AP, S.C., Lauly, S., Larochelle, H., Khapra, M., Ravindran, B., Raykar, V.C., Saha, A.,
2014. An autoencoder approach to learning bilingual word representations.
In: Advances in Neural Information Processing Systems. pp. 1853–1861.

Arcelli Fontana, F., Mäntylä, M.V., Zanoni, M., Marino, A., 2016. Comparing and
experimenting machine learning techniques for code smell detection. Empir.
Softw. Eng. 21 (3), 1143–1191, [Online]. Available: https://doi.org/10.1007/
s10664-015-9378-4.

Arnaoudova, V., Di Penta, M., Antoniol, G., Guéhéneuc, Y.-G., 2013. A new
family of software anti-patterns: Linguistic anti-patterns. In: CSMR ’13:
Proceedings of the 2013 17th European Conference on Software Maintenance
and Reengineering. IEEE Computer Society, pp. 187–196.

Azadi, U., Fontana, F.A., Zanoni, M., 2018. Poster: machine learning based
code smell detection through wekanose. In: 2018 IEEE/ACM 40th In-
ternational Conference on Software Engineering: Companion Proceedings
(ICSE-Companion). IEEE, pp. 288–289.

Azeem, M.I., Palomba, F., Shi, L., Wang, Q., 2019. Machine learning techniques
for code smell detection: A systematic literature review and meta-analysis.
Inf. Softw. Technol. 108, 115–138.

Babii, H., Janes, A., Robbes, R., 2019. Modeling vocabulary for big code machine
learning. arXiv preprint arXiv:1904.01873.

Barbez, A., Khomh, F., Guéhéneuc, Y.-G., 2019. A machine-learning based
ensemble method for anti-patterns detection.

Baziotis, C., Pelekis, N., Doulkeridis, C., 2017. Datastories at semeval-2017 task
4: Deep lstm with attention for message-level and topic-based sentiment
analysis. In: Proceedings of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pp. 747–754.

Becker, L.A., 2000. Effect size (ES). Retrieved Sept. 9, 2007, Online]. Available:
https://www.uv.es/~friasnav/EffectSizeBecker.pdf.

Bengio, Y., Courville, A., Vincent, P., 2013. Representation learning: A review and
new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35 (8), 1798–1828.

Biegel, B., Soetens, Q.D., Hornig, W., Diehl, S., Demeyer, S., 2011. Comparison
of similarity metrics for refactoring detection. In: Proceedings of the 8th
Working Conference on Mining Software Repositories. In: MSR ’11, ACM,
pp. 53–62, [Online]. Available: http://doi.acm.org/10.1145/1985441.1985452.

Bryton, S., Brito, F., Abreu, E., Monteiro, M., 2010. Reducing subjectivity in code
smells detection: Experimenting with the long method. In: Proceedings - 7th
International Conference on the Quality of Information and Communications
Technology, QUATIC 2010. IEEE, Faculdade de Ciencias e Tecnologia, New
University of Lisbon, Caparica, Portugal, pp. 337–342.

Chen, Z., Kommrusch, S.J., Tufano, M., Pouchet, L.-N., Poshyvanyk, D., Mon-
perrus, M., 2019. Sequencer: Sequence-to-sequence learning for end-to-end
program repair. IEEE Trans. Softw. Eng..

Chen, M., Xu, Z., Weinberger, K., Sha, F., 2012. Marginalized denoising
autoencoders for domain adaptation. arXiv preprint arXiv:1206.4683.

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F.,
Schwenk, H., Bengio, Y., 2014. Learning phrase representations using rnn
encoder–decoder for statistical machine translation. In: Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 1724–1734.

Chollet, F., 2017. Deep Learning with Python. Manning Publications Co.
Cohen, J., 1960. A coefficient of agreement for nominal scales. Educ. Psychol.

Meas. 20 (1), 37–46.
Czibula, G., Marian, Z., Czibula, I.G., 2015. Detecting software design defects using

relational association rule mining. Knowl. Inf. Syst. 42 (3), 545–577.

http://refhub.elsevier.com/S0164-1212(21)00033-9/sb1
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb1
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb1
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb1
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb1
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb2
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb2
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb2
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb2
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb2
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb4
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb4
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb4
http://arxiv.org/abs/1711.00740
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb6
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb6
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb6
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb6
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb6
http://arxiv.org/abs/1808.01400
https://doi.org/10.1145/3290353
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb9
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb9
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb9
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb9
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb9
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb10
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb10
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb10
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb10
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb10
https://doi.org/10.1007/s10664-015-9378-4
https://doi.org/10.1007/s10664-015-9378-4
https://doi.org/10.1007/s10664-015-9378-4
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb12
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb12
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb12
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb12
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb12
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb12
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb12
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb13
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb13
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb13
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb13
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb13
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb13
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb13
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb14
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb14
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb14
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb14
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb14
http://arxiv.org/abs/1904.01873
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb16
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb16
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb16
https://www.uv.es/~friasnav/EffectSizeBecker.pdf
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb19
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb19
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb19
http://doi.acm.org/10.1145/1985441.1985452
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb21
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb21
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb21
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb21
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb21
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb21
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb21
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb21
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb21
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb22
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb22
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb22
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb22
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb22
http://arxiv.org/abs/1206.4683
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb25
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb26
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb26
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb26
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb27
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb27
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb27


T. Sharma, V. Efstathiou, P. Louridas et al. The Journal of Systems & Software 176 (2021) 110936

D

D

E

E

F

F

F

F

F

F

F

G

G

G

G

G

G

G

G

H

H

H

H

H

H

H

H

H

H

allmeier, V., Zimmermann, T., 2007. Extraction of bug localization benchmarks
from history. In: Proceedings of the Twenty-Second IEEE/ACM International
Conference on Automated Software Engineering. pp. 433–436.

eng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L., 2009. Imagenet: A
large-scale hierarchical image database. In: CVPR09.

fstathiou, V., Spinellis, D., 2019. Semantic source code models using identifier
embeddings. In: 2019 IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR). IEEE, pp. 29–33.

rnst, M.D., 2017. Natural language is a programming language: Applying natural
language processing to software development. In: LIPIcs-Leibniz International
Proceedings in Informatics, Vol. 71. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik.

elleman, D.J., Van Essen, D.C., 1991. Distributed hierarchical processing in the
primate cerebral cortex. Cerebral Cortex 1 (1), 1–47.

ontana, F.A., Pigazzini, I., Roveda, R., Zanoni, M., 2016. Automatic detection
of instability architectural smells. In: Software Maintenance and Evolution
(ICSME), 2016 IEEE International Conference on. IEEE, pp. 433–437.

ontana, F.A., Zanoni, M., 2017. Code smell severity classification using machine
learning techniques. Knowl.-Based Syst. 128, 43–58.

oster, S.R., Griswold, W.G., Lerner, S., 2012. Witchdoctor: IDE support for real-
time auto-completion of refactorings. In: Software Engineering (ICSE), 2012
34th International Conference on. IEEE, pp. 222–232.

owler, M., 1999. Refactoring: Improving the Design of Existing Programs, first
ed Addison-Wesley Professional.

u, W., Menzies, T., 2017. Easy over hard: A case study on deep learning. In:
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering. ACM, pp. 49–60.

u, S., Shen, B., 2015. Code bad smell detection through evolutionary data
mining. In: International Symposium on Empirical Software Engineering
and Measurement. IEEE, Shanghai Jiaotong University, Shanghai, China, pp.
41–49.

al, Y., Ghahramani, Z., 2015. A theoretically grounded application of dropout
in recurrent neural networks. arXiv e-prints, arXiv:1512.05287.

arcia, J., Popescu, D., Edwards, G., Medvidovic, N., 2009a. Identifying architec-
tural bad smells. In: CSMR ’09: Proceedings of the 2009 European Conference
on Software Maintenance and Reengineering. IEEE Computer Society, pp.
255–258.

arcia, J., Popescu, D., Edwards, G., Medvidovic, N., 2009b. Toward a catalogue of
architectural bad smells. In: Proceedings of the 5th International Conference
on the Quality of Software Architectures: Architectures for Adaptive Software
Systems. In: QoSA ’09, Springer-Verlag, pp. 146–162.

oodfellow, I., Bengio, Y., Courville, A., Bengio, Y., 2016. Deep Learning, Vol. 1.
MIT press Cambridge.

rave, E., Bojanowski, P., Gupta, P., Joulin, A., Mikolov, T., 2018. Learning word
vectors for 157 languages. In: Proceedings of the International Conference
on Language Resources and Evaluation (LREC 2018).

raves, A., Jaitly, N., Mohamed, A.-r., 2013. Hybrid speech recognition with deep
bidirectional LSTM. In: Automatic Speech Recognition and Understanding
(ASRU), 2013 IEEE Workshop on. IEEE, pp. 273–278.

reff, K., Srivastava, R.K., Koutník, J., Steunebrink, B.R., Schmidhuber, J., 2017.
Lstm: A search space odyssey. IEEE Trans. Neural Netw. Learn. Syst 28 (10),
2222–2232.

upta, R., Pal, S., Kanade, A., Shevade, S., 2017. Deepfix: Fixing common c
language errors by deep learning. In: AAAI. pp. 1345–1351.

adj-Kacem, M., Bouassida, N., 2018. A hybrid approach to detect code smells
using deep learning. In: ENASE. pp. 137–146.

awkins, S., He, H., Williams, G., Baxter, R., 2002. Outlier detection using replica-
tor neural networks. In: Proceedings of the 4th International Conference on
Data Warehousing and Knowledge Discovery (DaWak) 2002. Springer-Verlag,
Berlin Heidelberg, pp. 170–180.

ellendoorn, V.J., Devanbu, P., 2017. Are deep neural networks the best choice
for modeling source code?. In: Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering. ACM, pp. 763–773.

indle, A., Barr, E.T., Su, Z., Gabel, M., Devanbu, P., 2012. On the natural-
ness of software. In: Software Engineering (ICSE), 2012 34th International
Conference on. IEEE, pp. 837–847.

inton, G.E., Osindero, S., Teh, Y.-W., 2006. A fast learning algorithm for deep
belief nets. Neural Comput. 18 (7), 1527–1554.

inton, G.E., Zemel, R.S., 1994. Autoencoders, minimum description length
and Helmholtz free energy. In: Advances in Neural Information Processing
Systems. pp. 3–10.

ochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural Comput.
9 (8), 1735–1780.

ubel, D.H., Wiesel, T.N., 1962. Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex. J. Physiol 160 (1), 106–154.

uo, X., Li, M., Zhou, Z.-H., 2016. Learning unified features from natural
and programming languages for locating buggy source code. In: IJCAI. pp.
1606–1612.

usain, H., Wu, H.-H., Gazit, T., Allamanis, M., Brockschmidt, M., 2019. Code-
searchnet challenge: Evaluating the state of semantic code search. arXiv
preprint arXiv:1909.09436.
23
Ioffe, S., Szegedy, C., 2015. Batch normalization: accelerating deep network
training by reducing internal covariate shift. In: Proceedings of the
32nd International Conference on International Conference on Machine
Learning-Volume 37. JMLR. org, pp. 448–456.

Iyer, S., Konstas, I., Cheung, A., Zettlemoyer, L., 2016. Summarizing source code
using a neural attention model. In: Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers),
Vol. 1, pp. 2073–2083.

Japkowicz, N., Myers, C., Gluck, M., 1995. A novelty detection approach to
classification. In: Proceedings of the 14th International Joint Conference on
Artificial Intelligence (IJCAI 95)—Volume 1. Morgan Kaufmann Publishers Inc,
San Francisco, CA, USA, pp. 518—523.

Johnson, R., Zhang, T., 2015. Effective use of word order for text categorization
with convolutional neural networks. In: Proceedings of the 2015 Confer-
ence of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pp. 103–112.

Just, R., Jalali, D., Ernst, M.D., 2014. Defects4J: A database of existing faults
to enable controlled testing studies for Java programs. In: Proceedings of
the 2014 International Symposium on Software Testing and Analysis, pp.
437–440.

Kang, H.J., Bissyandé, T.F., Lo, D., 2019. Assessing the generalizability of code2vec
token embeddings. In: 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, pp. 1–12.

Karampatsis, R.-M., Babii, H., Robbes, R., Sutton, C., Janes, A., 2020. Big code !=
big vocabulary: Open-vocabulary models for source code. In: Proceedings
of the ACM/IEEE 42nd International Conference on Software Engineering.
In: ICSE ’20, Association for Computing Machinery, New York, NY, USA, pp.
1073–1085, [Online]. Available: https://doi.org/10.1145/3377811.3380342.

Karampatsis, R.-M., Sutton, C., 2019. Maybe deep neural networks are the best
choice for modeling source code. arXiv preprint arXiv:1903.05734.

Kessentini, W., Kessentini, M., Sahraoui, H., Bechikh, S., Ouni, A., 2014. A coop-
erative parallel search-based software engineering approach for code-smells
detection. IEEE Trans. Softw. Eng. 40 (9), 841–861.

Khomh, F., Vaucher, S., Guéhéneuc, Y.-G., Sahraoui, H., 2009. A Bayesian approach
for the detection of code and design smells. In: QSIC ’09: Proceedings of the
2009 Ninth International Conference on Quality Software. IEEE Computer
Society, pp. 305–314.

Khomh, F., Vaucher, S., Guéhéneuc, Y.-G., Sahraoui, H., 2011. BDTEX: A GQM-
based Bayesian approach for the detection of antipatterns. In: Journal of
Systems and Software. Ecole Polytechnique de Montreal, Montreal, Canada,
pp. 559–572.

Kim, D.K., 2017. Finding bad code smells with neural network models. Int. J.
Electr. Comput. Eng. (2088-8708) 7 (6).

Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Kramer, M.A., 1991. Nonlinear principal component analysis using autoassocia-
tive neural networks. AIChE J 37 (2), 233–243.

Kraus, O.Z., Ba, J.L., Frey, B.J., 2016. Classifying and segmenting microscopy
images with deep multiple instance learning. Bioinformatics 32 (12), i52–i59.

Krizhevsky, A., Hinton, G., 2009. Learning Multiple Layers of Features from Tiny
Images. Tech. Rep, Citeseer.

Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with
deep convolutional neural networks. In: Advances in Neural Information
Processing Systems. pp. 1097–1105.

Kruchten, P., Nord, R.L., Ozkaya, I., 2012. Technical debt: From metaphor to
theory and practice. IEEE Softw 29 (6), 18–21.

Lawrence, S., Giles, C.L., Tsoi, A.C., Back, A.D., 1997. Face recognition: A
convolutional neural-network approach. IEEE Trans. Neural Netw 8 (1),
98–113.

LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521 (7553), 436.
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998. Gradient-based learning applied

to document recognition. Proc. IEEE 86 (11), 2278–2324.
LeCun, Y., Cortes, C., Burges, C., 2010. MNIST Handwritten digit database. AT&T

Lab. 2, [Online] http://yann.lecun.com/exdb/mnist.
Lee, S.-M., Yoon, S.M., Cho, H., 2017. Human activity recognition from ac-

celerometer data using convolutional neural network. In: Big Data and Smart
Computing (BigComp), 2017 IEEE International Conference on. IEEE, pp.
131–134.

Li, J., He, P., Zhu, J., Lyu, M.R., 2017. Software defect prediction via convolutional
neural network. In: Software Quality, Reliability and Security (QRS), 2017
IEEE International Conference on. IEEE, pp. 318–328.

Ling, W., Blunsom, P., Grefenstette, E., Hermann, K.M., Kočiskỳ, T., Wang, F., Se-
nior, A., 2016. Latent predictor networks for code generation. In: Proceedings
of the 54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), Vol. 1, pp. 599–609.

Lippert, M., Roock, S., 2006. Refactoring in Large Software Projects: Performing
Complex Restructurings Successfully. John Wiley & Sons.

Liu, H., Jin, J., Xu, Z., Bu, Y., Zou, Y., Zhang, L., 2019. Deep learning based code
smell detection. IEEE Trans. Softw. Eng..

http://refhub.elsevier.com/S0164-1212(21)00033-9/sb28
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb28
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb28
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb28
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb28
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb29
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb29
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb29
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb30
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb30
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb30
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb30
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb30
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb31
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb31
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb31
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb31
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb31
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb31
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb31
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb32
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb32
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb32
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb33
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb33
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb33
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb33
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb33
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb34
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb34
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb34
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb35
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb35
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb35
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb35
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb35
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb36
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb36
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb36
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb37
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb37
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb37
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb37
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb37
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb38
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb38
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb38
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb38
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb38
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb38
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb38
http://arxiv.org/abs/1512.05287
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb40
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb40
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb40
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb40
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb40
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb40
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb40
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb41
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb41
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb41
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb41
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb41
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb41
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb41
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb42
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb42
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb42
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb44
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb44
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb44
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb44
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb44
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb45
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb45
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb45
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb45
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb45
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb46
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb46
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb46
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb47
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb47
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb47
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb48
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb48
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb48
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb48
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb48
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb48
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb48
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb49
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb49
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb49
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb49
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb49
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb50
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb50
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb50
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb50
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb50
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb51
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb51
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb51
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb52
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb52
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb52
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb52
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb52
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb53
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb53
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb53
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb54
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb54
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb54
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb55
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb55
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb55
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb55
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb55
http://arxiv.org/abs/1909.09436
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb57
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb57
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb57
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb57
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb57
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb57
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb57
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb59
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb59
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb59
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb59
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb59
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb59
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb59
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb62
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb62
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb62
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb62
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb62
https://doi.org/10.1145/3377811.3380342
http://arxiv.org/abs/1903.05734
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb65
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb65
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb65
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb65
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb65
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb66
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb66
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb66
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb66
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb66
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb66
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb66
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb67
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb67
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb67
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb67
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb67
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb67
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb67
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb68
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb68
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb68
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb70
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb70
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb70
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb71
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb71
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb71
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb72
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb72
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb72
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb73
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb73
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb73
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb73
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb73
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb74
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb74
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb74
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb75
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb75
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb75
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb75
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb75
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb76
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb77
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb77
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb77
http://yann.lecun.com/exdb/mnist
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb79
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb79
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb79
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb79
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb79
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb79
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb79
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb80
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb80
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb80
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb80
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb80
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb82
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb82
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb82
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb83
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb83
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb83


T. Sharma, V. Efstathiou, P. Louridas et al. The Journal of Systems & Software 176 (2021) 110936

L

M

M

M

M

M

M

M

M

M

M

N
N

N

O

O

O

P

P

P

P

P

P

P

uong, T., Pham, H., Manning, C.D., 2015. Effective approaches to attention-
based neural machine translation. In: Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing, pp. 1412–1421.

aas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C., 2011. Learning
word vectors for sentiment analysis. In: Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Language
Technologies. Association for Computational Linguistics, Portland, Oregon,
USA, pp. 142–150, [Online]. Available: http://www.aclweb.org/anthology/
P11-1015.

aiga, A., Ali, N., Bhattacharya, N., Sabané, A., Guéhéneuc, Y.-G., Aïmeur, E.,
2012a. SMURF: A SVM-based incremental anti-pattern detection approach.
In: Proceedings - Working Conference on Reverse Engineering, WCRE. IEEE,
Ptidej Team, pp. 466–475.

aiga, A., Ali, N., Bhattacharya, N., Sabané, A., Guéhéneuc, Y.-G., Antoniol, G.,
Aïmeur, E., 2012b. Support vector machines for anti-pattern detection. In:
ASE 2012: Proceedings of the 27th IEEE/ACM International Conference on
Automated Software Engineering. ACM, Polytechnic School of Montreal, pp.
278–281.

arinescu, R., 2005. Measurement and quality in object-oriented design. In:
21st IEEE International Conference on Software Maintenance (ICSM’05). IEEE,
Universitatea Politehnica din Timisoara, Timisoara, Romania, pp. 701–704.

arkovtsev, V., Long, W., Bulychev, E., Keramitas, R., Slavnov, K., Markowski, G.,
2018. Splitting source code identifiers using bidirectional LSTM recurrent
neural network.

artens, J., 2010. Deep learning via hessian-free optimization. In: ICML, Vol. 27.
pp. 735–742.

asci, J., Meier, U., Cireşan, D., Schmidhuber, J., 2011. Stacked convolu-
tional auto-encoders for hierarchical feature extraction. In: International
Conference on Artificial Neural Networks. Springer, pp. 52–59.

oha, N., Guéhéneuc, Y., Duchien, L., Meur, A.L., 2010. DECOR: a method for the
specification and detection of code and design smells. IEEE Trans. Softw. Eng
36 (1), 20–36.

ou, L., Li, G., Zhang, L., Wang, T., Jin, Z., 2016. Convolutional neural networks
over tree structures for programming language processing. In: AAAI, Vol. 2.
p. 4, no. 3.

unaiah, N., Kroh, S., Cabrey, C., Nagappan, M., 2017. Curating github for
engineered software projects. Empir. Softw. Eng. 22 (6), 3219–3253, [Online].
Available: https://doi.org/10.1007/s10664-017-9512-6.

g, A., et al., 2011. Sparse autoencoder. CS294A Lecture notes 72 (2011), 1–19.
guyen, A.T., Nguyen, T.T., Nguyen, T.N., 2013. Lexical statistical machine

translation for language migration. In: Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering. ACM, pp. 651–654.

ucci, D.D., Palomba, F., Tamburri, D.A., Serebrenik, A., Lucia, A.D., 2018. De-
tecting code smells using machine learning techniques: Are we there yet?.
In: 2018 IEEE 25th International Conference on Software Analysis, Evolution
and Reengineering (SANER), Vol. 00. pp. 612–621, [Online]. Available: doi.
ieeecomputersociety.org/10.1109/SANER.2018.8330266.

da, Y., Fudaba, H., Neubig, G., Hata, H., Sakti, S., Toda, T., Nakamura, S.,
2015. Learning to generate pseudo-code from source code using statistical
machine translation (t). In: Automated Software Engineering (ASE), 2015
30th IEEE/ACM International Conference on. IEEE, pp. 574–584.

tt, J., Atchison, A., Harnack, P., Best, N., Anderson, H., Firmani, C., Linstead, E.,
2018. Learning lexical features of programming languages from imagery
using convolutional neural networks. In: Proceedings of the 26th Conference
on Program Comprehension. In: ICPC ’18, ACM, New York, NY, USA, pp.
336–339, [Online]. Available: http://doi.acm.org/10.1145/3196321.3196359.

uni, A., Kula, R.G., Kessentini, M., Inoue, K., 2015. Web service antipatterns
detection using genetic programming. In: GECCO ’15: Proceedings of the
2015 Annual Conference on Genetic and Evolutionary Computation. ACM,
Osaka University, pp. 1351–1358.

aiva, T., Damasceno, A., Figueiredo, E., Sant’Anna, C., 2017. On the evaluation
of code smells and detection tools. J. Softw. Eng. Res. Dev 5 (1).

alomba, F., Bavota, G., Di Penta, M., Oliveto, R., Poshyvanyk, D., De Lucia, A.,
2015. Mining version histories for detecting code smells. IEEE Trans. Softw.
Eng. 41 (5), 462–489.

alomba, F., Panichella, A., De Lucia, A., Oliveto, R., Zaidman, A., 2016. A
textual-based technique for smell detection. In: 2016 IEEE 24th International
Conference on Program Comprehension (ICPC). IEEE, Universita di Salerno,
Salerno, Italy, pp. 1–10.

alomba, F., Panichella, A., Zaidman, A., Oliveto, R., De Lucia, A., 2018. The scent
of a smell: An extensive comparison between textual and structural smells.
IEEE Trans. Softw. Eng. 44 (10), 977–1000.

ark, M.Y., Hastie, T., 2007. L1-regularization path algorithm for generalized
linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 69 (4), 659–677.

arkhi, O.M., Vedaldi, A., Zisserman, A., et al., 2015. Deep face recognition. In:
BMVC, Vol. 1. p. 6, no. 3.

ecorelli, F., Di Nucci, D., De Roover, C., De Lucia, A., 2020. A large empirical
assessment of the role of data balancing in machine-learning-based code
smell detection. J. Syst. Softw. 169, 110693, Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0164121220301448.
24
Piech, C., Huang, J., Nguyen, A., Phulsuksombati, M., Sahami, M., Guibas, L., 2015.
Learning program embeddings to propagate feedback on student code. In:
International Conference on Machine Learning. pp. 1093–1102.

Pu, Y., Narasimhan, K., Solar-Lezama, A., Barzilay, R., 2016. Sk_p: a neural
program corrector for MOOCs. In: Companion Proceedings of the 2016 ACM
SIGPLAN International Conference on Systems, Programming, Languages and
Applications: Software for Humanity. ACM, pp. 39–40.

Rahman, M., Palani, D., Rigby, P.C., 2019. Natural software revisited. In: 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE).
IEEE, pp. 37–48.

Rantala, L., Mäntylä, M., 2020. Predicting technical debt from commit contents:
reproduction and extension with automated feature selection. Softw. Qual.
J. 28, 1551—1579, [Online]. Available: https://doi.org/10.1007/s11219-020-
09520-3.

Rasool, G., Arshad, Z., 2015. A review of code smell mining techniques. J. Softw.:
Evol. Process 27 (11), 867–895.

Ren, X., Xing, Z., Xia, X., Lo, D., Wang, X., Grundy, J., 2019. Neural network-
based detection of self-admitted technical debt: From performance to
explainability. ACM Trans. Softw. Eng. Methodol. 28 (3), [Online]. Available:
https://doi.org/10.1145/3324916.

Robles, G., 2010. Replicating MSR: A study of the potential replicability of
papers published in the mining software repositories proceedings. In: Mining
Software Repositories (MSR), 2010 7th IEEE Working Conference on. IEEE, pp.
171–180.

Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1985. Learning Internal Representa-
tions by Error Propagation. Tech. Rep, California Univ San Diego La Jolla Inst
for Cognitive Science.

Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1986. Learning representations by
back-propagating errors. Nature 323 (6088), 533.

Sahin, D., Kessentini, M., Bechikh, S., Deb, K., 2014. Code-smell detection as a
bilevel problem. ACM Trans. Softw. Eng. Methodol. (TOSEM) 24 (1), 6–44.

Sainath, T.N., Kingsbury, B., Saon, G., Soltau, H., Mohamed, A.-r., Dahl, G.,
Ramabhadran, B., 2015. Deep convolutional neural networks for large-scale
speech tasks. Neural Netw. 64, 39–48.

Sakurada, M., Yairi, T., 2014. Anomaly detection using autoencoders with
nonlinear dimensionality reduction. In: Proceedings of the MLSDA 2014 2nd
Workshop on Machine Learning for Sensory Data Analysis, pp. 4–11.

Salehie, M., Li, S., Tahvildari, L., 2006. A metric-based heuristic framework to
detect object-oriented design flaws. In: ICPC ’06: Proceedings of the 14th
IEEE International Conference on Program Comprehension (ICPC’06). IEEE
Computer Society, University of Waterloo, pp. 159–168.

Sharma, T., 2016. Designite - a software design quality assessment tool. [Online].
Available:https://doi.org/10.5281/zenodo.2566832 http://www.designite-
tools.com.

Sharma, T., 2018. Designitejava. [Online]. Available: https://doi.org/10.5281/
zenodo.2566861 https://github.com/tushartushar/DesigniteJava.

Sharma, T., 2019a. Codesplit for c#. [Online]. Available: https://doi.org/10.5281/
zenodo.2566905.

Sharma, T., 2019b. Codesplitjava. [Online]. Available: https://doi.org/10.5281/
zenodo.2566865 https://github.com/tushartushar/CodeSplitJava.

Sharma, T., 2021. tushartushar/DeepLearningSmells: public release. Zenodo,
https://doi.org/10.5281/zenodo.4571626.

Sharma, T., Mishra, P., Tiwari, R., 2016. Designite — A software design quality
assessment tool. In: Proceedings of the First International Workshop on
Bringing Architecture Design Thinking Into Developers’ Daily Activities. In:
BRIDGE ’16, ACM.

Sharma, T., Spinellis, D., 2018. A survey on software smells. J. Syst. Softw. 138,
158–173, [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0164121217303114.

Socher, R., Pennington, J., Huang, E.H., Ng, A.Y., Manning, C.D., 2011. Semi-
supervised recursive autoencoders for predicting sentiment distributions. In:
Proceedings of the Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, pp. 151–161.

Spinellis, D., 2019. Dspinellis/tokenizer: Version 1.1. [Online]. Available: https:
//doi.org/10.5281/zenodo.2558420 https://github.com/dspinellis/tokenizer.

Spinellis, D., Kotti, Z., Mockus, A., 2020. A dataset for github repository dedupli-
cation. In: 17th International Conference on Mining Software Repositories.
In: MSR ’20, Association for Computing Machinery, New York, NY, USA.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., 2014.
Dropout: a simple way to prevent neural networks from overfitting. J. Mach.
Learn. Res. 15 (1), 1929–1958.

Sundermeyer, M., Schlüter, R., Ney, H., 2012. Lstm neural networks for language
modeling. In: Thirteenth Annual Conference of the International Speech
Communication Association.

Suryanarayana, G., Samarthyam, G., Sharma, T., 2014. Refactoring for Software
Design Smells: Managing Technical Debt, first ed Morgan Kaufmann.

Sutskever, I., Vinyals, O., Le, Q.V., 2014. Sequence to sequence learning with
neural networks. In: Advances in Neural Information Processing Systems.
pp. 3104–3112.

http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb86
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb86
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb86
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb86
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb86
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb86
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb86
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb87
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb87
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb87
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb87
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb87
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb87
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb87
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb87
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb87
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb88
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb88
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb88
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb88
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb88
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb89
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb89
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb89
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb89
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb89
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb90
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb90
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb90
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb91
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb91
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb91
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb91
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb91
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb92
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb92
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb92
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb92
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb92
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb93
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb93
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb93
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb93
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb93
https://doi.org/10.1007/s10664-017-9512-6
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb95
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb96
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb96
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb96
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb96
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb96
http://doi.ieeecomputersociety.org/10.1109/SANER.2018.8330266
http://doi.ieeecomputersociety.org/10.1109/SANER.2018.8330266
http://doi.ieeecomputersociety.org/10.1109/SANER.2018.8330266
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb98
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb98
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb98
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb98
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb98
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb98
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb98
http://doi.acm.org/10.1145/3196321.3196359
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb100
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb100
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb100
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb100
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb100
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb100
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb100
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb101
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb101
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb101
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb102
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb102
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb102
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb102
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb102
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb103
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb103
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb103
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb103
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb103
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb103
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb103
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb104
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb104
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb104
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb104
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb104
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb105
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb105
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb105
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb106
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb106
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb106
http://www.sciencedirect.com/science/article/pii/S0164121220301448
http://www.sciencedirect.com/science/article/pii/S0164121220301448
http://www.sciencedirect.com/science/article/pii/S0164121220301448
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb108
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb108
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb108
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb108
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb108
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb109
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb109
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb109
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb109
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb109
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb109
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb109
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb110
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb110
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb110
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb110
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb110
https://doi.org/10.1007/s11219-020-09520-3
https://doi.org/10.1007/s11219-020-09520-3
https://doi.org/10.1007/s11219-020-09520-3
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb112
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb112
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb112
https://doi.org/10.1145/3324916
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb114
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb114
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb114
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb114
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb114
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb114
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb114
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb115
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb115
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb115
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb115
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb115
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb116
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb116
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb116
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb117
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb117
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb117
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb118
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb118
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb118
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb118
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb118
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb120
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb120
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb120
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb120
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb120
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb120
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb120
https://doi.org/10.5281/zenodo.2566832
http://www.designite-tools.com
http://www.designite-tools.com
http://www.designite-tools.com
https://doi.org/10.5281/zenodo.2566861
https://doi.org/10.5281/zenodo.2566861
https://doi.org/10.5281/zenodo.2566861
https://github.com/tushartushar/DesigniteJava
https://doi.org/10.5281/zenodo.2566905
https://doi.org/10.5281/zenodo.2566905
https://doi.org/10.5281/zenodo.2566905
https://doi.org/10.5281/zenodo.2566865
https://doi.org/10.5281/zenodo.2566865
https://doi.org/10.5281/zenodo.2566865
https://github.com/tushartushar/CodeSplitJava
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb125
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb125
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb125
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb126
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb126
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb126
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb126
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb126
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb126
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb126
http://www.sciencedirect.com/science/article/pii/S0164121217303114
http://www.sciencedirect.com/science/article/pii/S0164121217303114
http://www.sciencedirect.com/science/article/pii/S0164121217303114
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb128
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb128
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb128
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb128
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb128
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb128
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb128
https://doi.org/10.5281/zenodo.2558420
https://doi.org/10.5281/zenodo.2558420
https://doi.org/10.5281/zenodo.2558420
https://github.com/dspinellis/tokenizer
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb130
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb130
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb130
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb130
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb130
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb131
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb131
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb131
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb131
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb131
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb132
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb132
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb132
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb132
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb132
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb133
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb133
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb133
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb134
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb134
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb134
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb134
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb134


T. Sharma, V. Efstathiou, P. Louridas et al. The Journal of Systems & Software 176 (2021) 110936

S

T

T

T

T

V

V

V

W

W

W

W

W

W

Y

Y

Z

zegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A., 2015. Going deeper with convolutions. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1–9.

santalis, N., Chatzigeorgiou, A., 2011. Identification of extract method refactor-
ing opportunities for the decomposition of methods. J. Syst. Softw 84 (10),
1757–1782.

santalis, N., Mansouri, M., Eshkevari, L.M., Mazinanian, D., Dig, D., 2018. Accu-
rate and efficient refactoring detection in commit history. In: Proceedings
of the 40th International Conference on Software Engineering. In: ICSE ’18,
ACM, pp. 483–494, [Online]. Available: http://doi.acm.org/10.1145/3180155.
3180206.

ufano, M., Pantiuchina, J., Watson, C., Bavota, G., Poshyvanyk, D., 2019. On
learning meaningful code changes via neural machine translation. In: 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE).
IEEE, pp. 25–36.

ufano, M., Watson, C., Bavota, G., Di Penta, M., White, M., Poshyvanyk, D.,
2018. Deep learning similarities from different representations of source
code. In: 2018 IEEE/ACM 15th International Conference on Mining Software
Repositories (MSR). IEEE, pp. 542–553.

asilescu, B., Casalnuovo, C., Devanbu, P., 2017. Recovering clear, natural iden-
tifiers from obfuscated JS names. In: Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering. ACM, pp. 683–693.

idal, S.A., Marcos, C., Díaz-Pace, J.A., 2014. An approach to prioritize code smells
for refactoring. Autom. Softw. Eng 23 (3), 501–532.

incent, P., Larochelle, H., Bengio, Y., Manzagol, P.-A., 2008. Extracting and
composing robust features with denoising autoencoders. In: Proceedings of
the 25th International Conference on Machine Learning, pp. 1096–1103.

ang, Y., Huang, M., Zhao, L., et al., 2016. Attention-based lstm for aspect-level
sentiment classification. In: Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pp. 606–615.

ei, H., Li, M., 2017. Supervised deep features for software functional clone
detection by exploiting lexical and syntactical information in source code.
In: IJCAI. pp. 3034–3040.

en, T.-H., Gasic, M., Mrkšić, N., Su, P.-H., Vandyke, D., Young, S., 2015.
Semantically conditioned lstm-based natural language generation for spoken
dialogue systems. In: Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pp. 1711–1721.

hite, M., Tufano, M., Vendome, C., Poshyvanyk, D., 2016. Deep learning code
fragments for code clone detection. In: Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering. ACM, pp.
87–98.

hite, M., Vendome, C., Linares-Vásquez, M., Poshyvanyk, D., 2015. Toward
deep learning software repositories. In: Proceedings of the 12th Working
Conference on Mining Software Repositories. IEEE Press, pp. 334–345.

illiams, G., Baxter, R., He, H., Hawkins, S., Gu, L., 2002. A comparative study
of rnn for outlier detection in data mining. In: Proceedings of the IEEE
International Conference on Data Mining, pp. 709–712.

ao, J., Shepperd, M., 2020. Assessing software defection prediction performance:
Why using the matthews correlation coefficient matters. In: Proceedings
of the Evaluation and Assessment in Software Engineering. In: EASE ’20,
Association for Computing Machinery, New York, NY, USA, pp. 120–129,
[Online]. Available: https://doi.org/10.1145/3383219.3383232.

in, P., Neubig, G., 2017. A syntactic neural model for general-purpose code
generation. In: Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), Vol. 1, pp. 440–450.

ampetti, F., Serebrenik, A., Di Penta, M., 2020. Automatically learning patterns
for self-admitted technical debt removal. In: 2020 IEEE 27th International
Conference on Software Analysis, Evolution and Reengineering (SANER). pp.
355–366.
25
Zhou, C., Paffenroth, R.C., 2017. Anomaly detection with robust deep autoen-
coders. In: Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 665–674.

Tushar Sharma is currently a Research Scientist at Siemens Corporate Tech-
nology, Charlotte, USA. The topics related to software design and architecture,
refactoring, software quality (specifically code and design quality), and technical
debt define his career interests. He earned Ph.D. from the Athens University
of Economics and Business, Athens, Greece with a specialization in software
engineering in May 2019. Earlier, he obtained an MS in Computer Science
from the Indian Institute of Technology-Madras, Chennai, India. His professional
experience includes working with Siemens Research and Technology Center,
Bangalore, India for more than seven years (2008-2015). He co-authored "Refac-
toring for Software Design Smells: Managing Technical Debt" and two Oracle Java
certification books. He has founded and developed Designite which is a software
design quality assessment tool used by many practitioners and researchers
worldwide. He is an IEEE Senior Member.

Vasiliki Efstathiou holds a Ph.D. in Computer Science from University College
London, an M.Sc. in Computer Science from the same University and a B.Sc.
in Mathematics from the University of Crete. Her Ph.D. thesis investigated
automated theorem proving techniques for implementing computational argu-
mentation based on classical logic. Her research interests lie in the wider area of
knowledge representation, reasoning and natural language processing, whereas
her current research focuses on mining software repositories with particular
interest on developer interaction data.

Panos (Panagiotis) Louridas is an Associate Professor at the Department of
Management Science and Technology, Athens University of Economics and
Business. He holds an M.Sc. by Research and a Ph.D. in Computation from
the University of Manchester. He is the author of "Real World Algorithms:
A Beginner’s Guide", adopted by various universities around the world, and
translated in Russian, Korean, and traditional Chinese. His research spans
many different areas, including Software Engineering, Software Design, Security,
Practical Cryptography, Data Analytics. He has also been responsible for the
Zeus e-voting system, an open source, verifiable secure e-voting system, used by
people and organizations all around the world. Panos Louridas is a member of
the ACM, the IEEE, USENIX, and the AAAS. He is the recipient of three cheques
by Donald Knuth.

Diomidis Spinellis is the Head of and a Professor in the Department of
Management Science and Technology at the Athens University of Economics
and Business, Greece. His research interests include software engineering, IT
security, and cloud systems engineering. He has written two award-winning,
widely-translated books: "Code Reading" and "Code Quality: The Open Source
Perspective". His most recent book is Effective Debugging: 66 Specific Ways to
Debug Software and Systems. Dr. Spinellis has also published more than 300
technical papers in journals and refereed conference proceedings, which have
received more than 8000 citations. He served for a decade as a member of
the IEEE Software editorial board, authoring the regular "Tools of the Trade"
column, and as the magazine’s Editor-in-Chief over the period 2015–2018. He
has contributed code that ships with Apple’s macOS and BSD Unix and is the
developer of CScout, UMLGraph, dgsh, and other open-source software packages,
libraries, and tools. He holds an MEng in Software Engineering and a Ph.D.
in Computer Science, both from Imperial College London. Dr. Spinellis has
served as an elected member of the IEEE Computer Society Board of Governors
(2013–2015), and is a senior member of the ACM and the IEEE.

http://refhub.elsevier.com/S0164-1212(21)00033-9/sb136
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb136
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb136
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb136
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb136
http://doi.acm.org/10.1145/3180155.3180206
http://doi.acm.org/10.1145/3180155.3180206
http://doi.acm.org/10.1145/3180155.3180206
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb138
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb138
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb138
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb138
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb138
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb138
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb138
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb139
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb139
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb139
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb139
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb139
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb139
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb139
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb140
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb140
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb140
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb140
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb140
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb141
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb141
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb141
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb144
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb144
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb144
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb144
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb144
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb146
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb146
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb146
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb146
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb146
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb146
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb146
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb147
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb147
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb147
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb147
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb147
https://doi.org/10.1145/3383219.3383232
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb151
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb151
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb151
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb151
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb151
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb151
http://refhub.elsevier.com/S0164-1212(21)00033-9/sb151

	Code smell detection by deep direct-learning and transfer-learning
	Introduction
	Background and related work
	Code smells
	Deep learning
	Machine learning techniques on source code
	Machine learning on smell detection
	The need of applying deep learning for smell detection
	Challenges in applying deep learning on source code
	Limits in analogies with other domains
	Lack of resources


	Research objectives
	Research method
	Overview of the method
	Data curation
	Downloading repositories
	Smell detection
	Splitting code fragments
	Generating training and evaluation data
	Tokenizing learning data
	Data preparation

	Selection of smells
	Architecture of deep learning models
	cnn model
	rnn model
	Autoencoder model

	Hardware specification

	Results and discussion
	Results of RQ1
	Approach
	Results
	Implications

	Results of RQ2
	Approach
	Results
	Implications

	Discussion
	Is there a silver-bullet?
	Performance comparison with baseline
	Poor performance in detecting design smells
	Variation in training-time
	Exploring other source code representations

	Opportunities

	Threats to validity
	Construct validity
	Internal validity
	External validity

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	References


