
Contents lists available at ScienceDirect

Computer Languages, Systems & Structures

Computer Languages, Systems & Structures 41 (2015) 1–20
http://d
1477-84

n Corr
E-m
journal homepage: www.elsevier.com/locate/cl
A type-safe embedding of SQL into Java using the extensible
compiler framework J%

Vassilios Karakoidas n, Dimitris Mitropoulos, Panagiotis Louridas,
Diomidis Spinellis
Department of Management Science and Technology, Athens University of Economics and Business, Pattision 76, GR-104 34 Athens, Greece
a r t i c l e i n f o

Article history:
Received 6 August 2014
Received in revised form
10 December 2014
Accepted 3 January 2015
Available online 10 January 2015

Keywords:
Domain-specific languages
Programming languages
x.doi.org/10.1016/j.cl.2015.01.001
24/& 2015 Elsevier Ltd. All rights reserved.

esponding author.
ail address: bkarak@aueb.gr (V. Karakoidas).
a b s t r a c t

J% is an extension of the Java programming language that efficiently supports the
integration of domain-specific languages. In particular, J% allows the embedding of
domain-specific language code into Java programs in a syntax-checked and type-safe
manner. This paper presents J%'s support for the SQL language. J% checks the syntax and
semantics of SQL statements at compile-time. It supports query validation against a
database schema or through execution to a live database server. The J% compiler generates
code that uses standard JDBC API calls, enhancing runtime efficiency and security against SQL

injection attacks.
& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Domain-specific languages (DSLs) [1–4] are designed specifically to address problems in a particular domain.
Furthermore, they are used to improve the efficiency in a software development process [5,6]. Well-known DSLs include
regular expressions and SQL.

General-purpose languages (GPLs) have a wider scope, providing a set of processing capabilities applicable to various
problem domains [4]. Typical examples of GPLs are Java, Cþþ and Scala.

Modern software engineering paradigms indicate that DSLs are often used together with GPLs [7–10]. The integration of SQL

with various GPLs constitutes a field that drew the attention of researchers and practitioners for many years [11–14]. This
integration in the context of Java is realised with a JDBC (Java Database Connectivity) application library [15]. By using it, the
programmer has to pass the SQL query to the database as a string. Through this process, the Java compiler is completely
unaware of the SQL language contained within the Java code and usually many SQL syntax and type errors are detected at
runtime. Such errors remain undetected, even with extensive testing during the development process.

J% (pronounced J-mod and stands for modular Java) is an extension of the Java programming language [16] initially
discussed in reference [17]. Its main contribution resides in the development of a generic framework, by which arbitrary
DSLs can be embedded in Java programs in a type-safe, syntactically correct fashion. DSL can be included on demand as
module plug-ins.

www.sciencedirect.com/science/journal/14778424
www.elsevier.com/locate/cl
http://dx.doi.org/10.1016/j.cl.2015.01.001
http://dx.doi.org/10.1016/j.cl.2015.01.001
http://dx.doi.org/10.1016/j.cl.2015.01.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2015.01.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2015.01.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2015.01.001&domain=pdf
mailto:bkarak@aueb.gr
http://dx.doi.org/10.1016/j.cl.2015.01.001
http://dx.doi.org/10.1016/j.cl.2015.01.001


V. Karakoidas et al. / Computer Languages, Systems & Structures 41 (2015) 1–202
This work analyses the case of SQL integration. The prototype implementation focuses on MySQL database backend, but in
the future, we plan to expand the module's support to other RDBMS too. The key contribution points are the following:

Query validation: The SQL queries are syntactically checked, and optionally can be validated against a specified SQL database schema.
In addition, the queries can also be executed in a live database environment at compile-time to provide real-world testing.

Type safety: The integration between the two languages is type-safe, and all problems are reported at compile-time. The
current implementation uses J%'s type mapping facility, which enables the declaration of compatible type relations
between languages. This approach follows the standard type mapping conventions proposed in the JDBC APIs
(Application Programming Interfaces) [15].

Query compile-time configuration: Each SQL query can be separately configured with different compile-time and runtime
features. This is implemented with the utilisation of the external configuration concept, which was introduced by
the J% compiler architecture [17].

Support for the SQL “in” operator: The current JDBC standard does not support the SQL operator in conveniently. Our approach
supports it in a better, type-safe way. It simplifies the usage of this operator, which normally requires the
programmer to write additional code to handle the translation from the Java composite types to an SQL set.

Compatibility & security: The SQL module uses the existing JDBC specification and does not require from programmers to learn
and understand new APIs. The generated code utilises prepared statements, therefore securing the application
against SQL injection attacks.

2. Motivation

Consider the case of a Java application that stores its data in a relational database. The class SQLSimpleExample

contains a method called execSQL that accepts a string type formal parameter, labelled id. A standard implementation for
the Java programming language is presented in the listing below:

The value passed by the parameter is concatenated with the SQL query string. From the previous listing, three issues arise:
1.
 The SQL query is passed as a String and the compiler is not aware that this is an SQL query at compile-time.

2.
 The parameter (id) is concatenated to the SQL query and its actual value is never checked.

3.
 The above implementation is vulnerable to SQL injection attacks [18].
With heavy duty unit testing [19] and good code coverage some of aforementioned issues can be discovered and corrected
in time, but the rest can lead to many undesired situations.

A common technique to address the above issues is the use of prepared statements. This is a JDBC feature that offers an API to
parameterise an SQL query. By using the prepared statements, the above code would be transformed into the following listing:

In the code above, the effect of the second and the third issue is mitigated. The SQL query parameter is sanitised by the application
library, and type safety is guaranteed at compile-time. But the first issue still stands, since the compiler does not syntactically



V. Karakoidas et al. / Computer Languages, Systems & Structures 41 (2015) 1–20 3
check the SQL code. To counteract the aforementioned issues, researchers have introduced various approaches and techniques. In
the following sections we present their main characteristics, advantages, and flaws.
3. Approaches of integrating SQL with general-purpose languages

Related research in the field can be examined based on the five design integration patterns for GPLs and DSLs, defined by Mernik
et al. [20] (see Table 1). The following section is organised by categorising the related research approaches according to them.

Table 2 summarises the approaches and for every approach provides information about two functional characteristics
and one non-functional. These are:

Syntax (functional): The approach supports DSL syntax checking.
Typing (functional): Types are mapped between the DSL and the GPL and errors are detected at compile-time.
Complexity (non-functional): How complex is the approach for the average programmer that already knows the GPL. The

complexity can be characterised as low, medium, or high. Low complexity denotes that a programmer with good
Table 1
Dominant design integration patterns as proposed by Mernik et al. [20].

Design pattern Description

Design: Language Exploitation (extension) The DSL extends an existing language with new data types, semantic elements, and syntax
Design: Language Exploitation

(specialisation)
The DSL restricts an existing language for purposes of safety, static checking, and optimisations

Implementation: Extensible-Compiler /
Interpreter

A GPL compiler / interpreter is extended with domain-specific optimisation rules and domain-specific
code generation

Implementation: Embedding DSL constructs are embedded in an existing GPL (the host language) by defining new abstract data types
and operators

Implementation: Preprocessor The DSL syntax is translated to constructs in an existing, host language

Table 2
DSL integrations score according to syntax checking, static typing and complexity.

Project Language Syntax Typing Complexity

Java Java Low
Python Python Low
ODB Cþþ Low

Squeryl Scala Medium

Slick Scala Medium

SOCI Cþþ Medium
JPA Java High

DTL Cþþ High

Perl Perl Low
Hibernate Java High

Anorm Scala Medium

JOOQ Java, Scala High

Scala [21] Scala Low
JDBC Checker [22] Java High

SugarJ [23] Java High

SQL Detection Plugin [24] Java High
JSquash [25] Java High

SQL DOM [26] C# Medium

Switch [27] Ruby High

Haskell/DB [8] Haskell High

Cω [28] C# High

SIQ [29] Scala High

LINQ [30] C# Low

SQLJ [31] Java Low

Powerbuilder Powerscript Low

J% [17] Java Medium



V. Karakoidas et al. / Computer Languages, Systems & Structures 41 (2015) 1–204
knowledge of the base language could use the DSL integration framework with reasonable effort and high means
the exact opposite.
3.1. Implementation: embedding

All mainstream programming languages, like Java, Perl, and Python, are using the Implementation: embedding pattern to
integrate SQL. The concept of this pattern is simple; there is an application library, as JDBC in Java, that implements the SQL

connectivity with the server. An API is provided for the host language to access it. The SQL queries are passed as strings to the
application library and are executed in the server. All errors are reported upon execution at runtime.

ORM (Object-Relational Mapping) approaches like Hibernate [32], JPA (Java Persistence API) [33], (Scala Language-Integrated
Connection Kit) [34], and Squeryl [35] provide a way to access a relational database, by introducing a programming layer,
typically supported by a custom querying DSL, or by extending the host language, in order to automatically generate and
execute the SQL code. This approach has several advantages; the database entities are closely coupled with the host language
and the application is completely decoupled from any database backend. The main disadvantage of this approach is that the
programmer needs to learn a new query language. In addition, this language is expressed via strings, thus it suffers from the
same problems related to JDBC.

Anorm [36] is another Scala integration approach that enables database access within the Play! web application
framework. It adopts the principle that SQL has more than enough features and language richness to cover all database access
uses cases that an application could want; thus it offers a Scala library that enhances SQL integration, simplifying common
usage patterns via a sophisticated API.

Similar approaches in Cþþ include ODB [37] and DTL (Database Template Library) [38] SOCI [39] is a Cþþ library that
provides advanced functionality when working with SQL. Technically, it is a Cþþ extension, but it provides a series of
techniques, only by using features of the standard Cþþ language, to enable SQL embedding; among them, basic query
support and basic ORM capabilities.

The main difference of J% against these approaches is that it checks the SQL queries at compile time and reports errors
directly to the programmer as detailed error messages. Also, it does not rely on a programmatic layer to efficiently map the
SQL abstractions to appropriate GPL ones (e.g. the layers introduced by ORMs).
3.2. Implementation: preprocessor

For this approach, the DSL syntax is translated to constructs in an existing, host language. Typical implementation
includes the preprocessors of the C and Cþþ programming languages, where the macros, which act as the DSL for this case,
are translated into C or Cþþ respectively.

JOOQ [40] is a Java application library and it offers a unique API that maps all database elements into Java code. This is
realised with a code generation utility. This utility scans the target database and generates all the models and the code that
represent the database as host language types. The generated code uses standard JDBC API calls. The advantage of this
approach is the direct mapping of each database table and field to a Java program element. For example, it is impossible for a
programmer to mistype a table name or any other SQL identifier, since it is directly mapped into a Java class and the compiler.
Hence, the IDE (Integrated Development Environment) will catch the error and present it to the user.

JDBC Checker [22] acts as a preprocessor and searches Java code for JDBC calls and SQL statements to detect possible errors.
Notably, the SQL statements are checked against the database schema. Annamaa et al. [24] use Eclipse's compiler
infrastructure to efficiently embed SQL queries in Java programs. The plug-in can detect common syntax SQL errors, including
misspelled table or column names. To embed DSLs, Erdweg [23] proposes SugarJ, a framework used to extend GPLs with
specific syntax. The main contribution of this framework is that can be applied on many languages as host languages (Java,
Haskell and Prolog).

JSquash [25] is a tool that analyses Java code and several by-products of a Java application and trace the existence of SQL

statements. Then, it automatically links the dynamic parts of SQL queries with the variables of the program. Typically, the tool
aims to identify this linkage and replace the contents of these variables accordingly, when the database schema changes.

SQL DOM [26] acts as a preprocessor and translates an SQL database schema into C#. The generated collection of classes is
used as an application library, thus ensuring type safety and syntax checking at compile-time.

Switch [27] is a compiler that can be used when developing in the Ruby programming language. Its goal is to provide an
alternative for the Ruby on Rails active record library, focusing on query performance.

J% does not translate SQL into Java, or any other intermediate language. It generates Java code, which utilises and exposes
to the programmer existing JDBC API calls.

The SQL statements are not altered and the type annotations are translated into prepared statements that use the JDBC

mapping for types. Contrary to our work, the aforementioned frameworks generate code that should be included in the
program during the compilation, or act as tools that help the programmer work with SQL.



V. Karakoidas et al. / Computer Languages, Systems & Structures 41 (2015) 1–20 5
3.3. Design: language exploitation (extension)

This integration pattern dictates that the host language is extended with new data types, semantic elements, and syntax
to efficiently support the DSL.

Haskell/DB [8] is a host language variant that has been extended to encapsulate SQL queries. This implementation follows
the Design: Language Exploitation (extension) pattern. SQL is completely hidden from the developer and queries are expressed
through a custom syntax embedded to the host language. This approach hinders productivity and forbids domain experts to
become involved with the development process.

Cω[28] integrates both SQL and XML into its syntax, extending the C# programming language and introducing numerous
changes to its type system and syntax. SIQ [29] (Scala Integrated Query) follows a similar approach.

LINQ is an integrated component for the .NET languages (C# and Visual Basic) that adds querying capabilities to objects.
It can be used to perform declaratively queries in collections of objects.

SQLJ [31] is a language extension of Java to support SQL. It offers type and syntax checking for both languages at compile-time.
These aforementioned frameworks use the GPL compiler to enforce syntax and type checking to the embedded DSL

statements. J% adopts this concept. In particular, it allows the inclusion of modules to support an infinite number of DSLs.
Thus, it provides a platform on which many DSLs could be used simultaneously and on demand by the programmer.
3.4. Design: language exploitation (specialisation)

This approach focuses on the specialisation of a GPL to efficiently integrate with a DSL. As a result, GPL syntax is enriched
with operators and statements to enforce type safety and syntax checking between the integrated languages. A weakness of
this approach is that the GPL syntax becomes very complex and loses its generalisation.

Powerscript is the core development language of the rapid application development tool, Powerbuilder [41]. Compile-
time query checks against a live database schema are supported through an active database connection.

J% offers similar efficiency in terms of SQL integration, permitting compile-time type checking and execution to an active
database, similarly with the aforementioned approach, but without sacrificing the GPL's general features.
3.5. Implementation: extensible compiler/interpreter

This approach proposes the extension of a GPL with domain-specific optimisation rules and code generation. The work
presented here is implemented as a module for the J% compiler, which follows this integration pattern [17] to enable this
functionality. The basic concepts of the J% language are presented in Section 4.

Several other works [42–46] adopt this approach, but are not focusing on supporting SQL efficiently or any other DSL.
Actually, these works focus mainly on enforcing type safety and provide extensible language syntax. They are relevant to J%
in terms of methodologies and techniques that are used to implement the language integration. Their similarities stop there,
since the J% module exploit the language's features and mechanisms to implement novel functionalities, like compile-time
SQL query configuration, etc. All these features are described in the following sections.
4. Design and implementation of the SQL module

The basic features of the J% programming language are presented in reference [17], which covers the basic features of J%
like syntax and type mapping. It also presents a premature version of regular expressions and SQL integration, but in the level
of a working prototype. The extended version of the SQL embedding module is presented here in more detail. In addition,
these works cover all aspects of J%, like type mapping, type annotations and presents an evaluation of J% framework through
a series of experiments.

The basic architecture of J% enables the development of compiler modules to support many DSLs. The following section
establishes a terminology and describes the J% basic syntax and features. Then type mapping is discussed, focusing on
supporting the SQL module. Finally, the module's specific technical aspects are examined in detail, like the overall
compilation process and code generation schemes.

First, we need to establish the basic J% terminology:

External module: External modules are compiler plug-ins that enable DSL support. Each module exposes two basic elements;
one or more external types and one configuration type. The modules are automatically invoked by the compiler,
when it detects DSL usage in the J% program.

External type: They are user-defined Java reference types [16] with extended syntax, like Java enumerations that are marked
by the keyword external and contain the DSL code. An external type always inherits the external base type or one
of its subtypes. External types act like DSL code container. The compiler identifies them at compile-time and calls the
specified external module. Its concept is similar to the assimilation type, introduced by Bravenboer and Visser in
reference [42]. Are External types are subtypes from the External Base Type, which is offered by the J% framework.



V. Karakoidas et al. / Computer Languages, Systems & Structures 41 (2015) 1–206
Configuration type: Provides compile-time configuration for each external type. These typically represent compile-time and
runtime options used for the generation and the execution of DSL code. These types are configure through type
parameterisation. The concept of external type configuration is analysed in Section 4.2.

External reference: External references are type annotations between the Java code and the DSL code. They are used to
define type mappings between the DSL statements and the Java code. This mechanism is thoroughly explained in
Section 4.3.

4.1. The SQL module basics

The SQL support of J% is implemented in the form of a compiler module. Only one type is declared, namely the SQLQuery.
The declaration of the SQLQuery type is the following:

The above code fragment contains the declaration of the SQLQuery. It extends the ExternalBaseType class. All new
queries must be SQLQuery subclasses. The following notation describes the aforementioned hierarchy:

CustomQueryo : SQLQueryo : ExternalBaseType ð1Þ
The type must be parameterised by a descendant of SQLConfiguration type. The usage of configuration types is
presented thoroughly in the next section. Its functionality includes two methods: getSQLStatement, which returns the SQL

query as a string literal and getStatement that returns an instance of a prepare statement object, given an open JDBC

database connection.

4.2. Configuring the SQL queries

SQL configuration parameters are used for the compile-time configuration of each SQL query. Practically, they initialise the
SQL module with a different context that drives the module's functionality. Configuration types are organised as a hierarchy,
such as the one described with the following notation:

CustomConfigo : SQLConfigurationo : ExternalConfiguration ð2Þ
The SQL module with the default configuration checks only the SQL syntax. Twomore checking facilities can be enabled through the

configuration system; one that checks the SQL query against the database schema ðSQLMOD_NS_AWAREÞ, and a second that performs
query check against a live database (SQLMOD_LIVE_TEST), by executing the queries with default values.

Fig. 1 depicts a configuration type hierarchy based on the options provided by the SQL module. The configuration options
typically affect compile-time options or runtime environment strategies. SQLConfiguration is the basic configuration
type provided by the SQL module. TestingConf and LiveTestingConf are two subtypes that override and set specific
compile-time options. These options are realised as class fields. The following code fragment exhibits the usage of the
TestingConf configuration type. The ExampleQuery type will check the SQL query against the database schema provided
by the file schema.sql, given as the value of SQLMOD_NS_URI configuration option.

Some of the SQLConfiguration options are also available at runtime and can be retrieved via the getRuntimeConfi-

gurartion method. The following listing contains the declaration of the basic ExternalConfiguration class.

SQLConfiguration and all configuration types must directly inherit this type and provide an implementation for its
abstractions. Table 3 summarises all available configuration options offered by the SQL module. If the column Runtime is



Table 3
Configuration options.

Name Description Runtime

SQLMOD_NS_AWARE SQL check with a database schema flag

SQLMOD_NS_URI Absolute path of the database schema file
SQLMOD_LIVE_TEST Live database testing flag

SQLMOD_JDBC_DRIVER The JDBC driver classpath

SQLMOD_DB_URL The database URL
SQLMOD_DB_LOGIN Login of database user
SQLMOD_DB_PASSWORD Password of the database user

Fig. 1. A typical configuration type hierarchy.

V. Karakoidas et al. / Computer Languages, Systems & Structures 41 (2015) 1–20 7
checked, then this configuration option is preserved in the runtime environment, if not, it is stripped during the compilation
phase. Also note that the configuration options, which are related to the database connection, are used only in the case of
live database testing (SQLMOD_LIVE_TEST).

4.3. Type mapping

J% offers a mechanism to support type mapping. To examine how it works, we introduce the following definitions:

Compatible types: All Java types that can be mapped to a series of DSL types and vice versa are defined as compatible types.
A compatible type defines a mapping from the assimilated domain type from a DSL to an assimilating type from the
GPL and vice versa [42].



Fig. 2. How type mapping works in J% SQL.

Table 4
Type mapping between Java and SQL, based on MySQL data-type definitions.

Compatible Dominant types Compatible

Java Java SQL SQL

java.lang.Byte byte tinyint –

java.lang.Short short smallint –

java.lang.Integer int int integer, mediumint, year
java.lang.Long long bigint –

java.lang.Float float float –

java.lang.Double double double –

– java.lang.BigDecimal decimal numeric
java.lang.Boolean boolean bit bit varying
– java.lang.String varchar character, char, tinytext, text
– byte[] BLOB tinyblob, mediumblob, longblob, longtext
– java.util.Date date –

– java.util.Timestamp timestamp time

V. Karakoidas et al. / Computer Languages, Systems & Structures 41 (2015) 1–208
Dominant types: Even if the type is compatible with other types, one type must be defined as dominant and be preferred
when the compiler needs to resolve compile-time ambiguities regarding data conversion between the two
languages. These types are referred to as dominant types.

Each module defines a series of compatible types that are used when the Java language and the embedded DSL need to
exchange data. As an example, consider the case where an integer for the SQL language (intsql) that needs to be mapped to a
Java type. The following conventions are required:
�
 the int SQL type should be mapped to the int Java primitive type as dominant,

�
 the int SQL type should also be mapped to the java.lang.Integer as compatible type.
Fig. 2 visualises the aforementioned mapping example. The boxes contain the types declared inside the scope of J% (Java
types) and SQL. We declare types in the Java type system, which have a one-to-one relation with the correspondent SQL types.
Then, we associate them with the Java types marked as “mapped” to provide the mapping information and conversion
functions. The arrowheads illustrate the conventions that are used.

Table 4 lists all the compatible and dominant types for the SQL module. So far, the module supports on MySQL data types.1

Each database backend should have its own custom type mapping rules, since it is common for RDBMS's to have unique data
types. The types listed on the table provide the basic mapping between Java and MySQL. SQL sets and Java collections and
composite types are also supported (see Section 4.6).

4.4. External references

In J%, each DSL maintains its own syntax. For simple cases, where the DSL has no type system, such as regular expressions,
the DSL is used completely unmodified. When the J% language needs to pass values with the DSL, an external reference must be
defined, which is a type annotation that describes the convention between the two type systems.
1 http://dev.mysql.com/doc/refman/5.0/en/data-type-overview.html

http://dev.mysql.com/doc/refman/5.0/en/data-type-overview.html


Fig. 3. External references syntax.

Table 5
External reference examples.

Parameters Constructor

½char_v�ochar4 TypeNameðchar char_vÞ
½p1�oint4 ; ½p2�oInteger4 TypeNameðint p1; Integer p2Þ
-No parameters- TypeName()

½sh�oshort½�4 ; ½i�oint4 TypeName(short[] s, int i)

V. Karakoidas et al. / Computer Languages, Systems & Structures 41 (2015) 1–20 9
Fig. 3 contains the BNF syntax for the external references. The main rule is named ExternalRef and it consists of two
parts: the parameter name and the field type.

Parameter name (ParameterName) defines the name of the parameter that is going to be used in the code generation
phase. The field type (FieldType) defines the corresponding Java type, according to the naming convention that is
commonly used by the Java programming language.

The number of external references is bound to the maximum formal parameters that the method can have. This is defined
in the Java Language Specification [16].

For example, for an SQL query that accepts an int as a parameter as input (c_id):

The expression ½c_id�oint4 defines that the customerId expects an int base type. [c_id] is the parameter name
and practically generates the following constructor for the SimpleSQL external type:

Table 5 lists a series of external reference examples along with their generated constructors.
4.5. The compilation process

The J% compiler adopts the language processing system architecture [47], more specifically it follows the pipe and filter
compiler architecture variation. Fig. 4 illustrates the compilation process. Both the J% compiler and the SQL module are
implemented in Java. The compilation process is straightforward; the compiler scans the input source files (n.jmod and
n.java). Then it marks each file as external or Java. The external keyword denotes that an SQL type is declared in this file,
and the marker Java that it contained pure Java–compatible code. Configuration types are also Java files. All this
information populates directly the symbol table and other type information structures. The code generator is invoked
and intermediate Java-compatible code is generated. Finally, the Java compiler is invoked, and translates the code into
executable JVM bytecode. All information regarding symbols, the external configuration and all the specifics of the
external code are available to the module at compile-time. After its initialisation, the SQL code is further analysed and
checked for discrepancies, which are reported as compile-time errors. Table 6 presents a set of size metrics for the SQL

module.



Table 6
SQL module size metrics.

Metric Value

File count 23
Lines of code 2417
Package count 5
Number of classes 22
Number of interfaces 0
Number of enumerations 1

Parse Source 
File

eludoMLQSrelipmoC%J

Semantic 
Analysis

Copy File

[Java-compatible code]

Initialise SQL 
Module

[External Code]

Analyse SQL 
Code

Generate Java 
Code

Database Schema 
Checked

[SQL syntax is ok]

[SQL syntax error detected]

[SQL Semantic error]

[SQL semantic check was ok]

Fig. 4. The compilation process.

V. Karakoidas et al. / Computer Languages, Systems & Structures 41 (2015) 1–2010
4.6. Code generation

Consider the following program:

The SelectExample external type extends the SQLQuery type. The query is written in SQL, enhanced by the usage of
external references. ½prim�oint4 is the statement of an external reference. It declares that the SQL query accepts
an integer parameter and thus a formal parameter will implement it, in the form of the generated type's constructor.



V. Karakoidas et al. / Computer Languages, Systems & Structures 41 (2015) 1–20 11
The declaration of the external configuration type, namely SimpleConf, follows:

The SimpleConf type parameter configures the compile-time part of SQLQuery. In this example, it instructs the compiler
to check the query with the provided database schema. A part of this configuration is passed into the runtime environment,
according to Table 3, enabling the developer to retrieve runtime information regarding the specific query. The configuration
option SQLMOD_NS_AWARE will remain, indicating that the query has been checked against the specified database SQL

schema. On the other hand, the SQLMOD_NS_URI should be omitted, since the path to the schema is specific to the
compilation environment. The configuration type may be different per external type without compile-time or runtime
overhead. The following listing contains the generated code.

The generated constructor accepts one int formal parameter, according to the external reference declaration. Note that the
parameter's name and its internal name is prim, which is the name that was used in the external reference declaration. The
abstract method getStatement is implemented. The generated code uses prepared statements from the JDBC API, which carries
along benefits, as the extra layer of type safety at compile-time and a transparent performance optimisation at runtime. In
addition, the usage of prepared statements enhances application security and protects the application from injection attacks.

J% uses the type mapping mechanism to enhance the code generation process. The SQL module uses prepared statements
and according to each type it uses the appropriate method from the JDBC API. This is handled automatically by the SQL module,
and the programmer does not need to write anything more than the external reference declaration.

The SQL operator in is a special case. The standard JDBC API does not provide a standard approach on handling this.
Consider the following example:



V. Karakoidas et al. / Computer Languages, Systems & Structures 41 (2015) 1–2012
The standard JDBC API requires to handle the creation of the SQL set manually and a programmer may develop code like the
following excerpt:

J% augments the JDBC API usage. A straightforward implementation would require the creation of an external type with the
following SQL query:

The external reference is declared for the composite type String[], which is an array of java.lang.String types. Finally,
to execute the query:

The underlying implementation of this feature follows in principle the standard approach that is proposed by JDBC.2 J%
provides functions for all Java composite types that derive from the standard supported types (Table 4).
5. Evaluation

We performed the evaluation of our approach with four small experiments; first, we analysed practically what it means
for a developer to port a JDBC-based Java code to J% code, we exhibit how the SQL errors are identified at and presented to the
programmer, we ported five Java projects that are using SQL, to examine what impact the J% code has on a project in terms of
common size metrics, such as LOC, and finally we measured the overall compilation overhead against the standard Java
compiler. The results presented in the following sections should be used as an insight to J%'s impact, since to evaluate it
thoroughly thousands lines of code from many developers must be written and analysed. Still, we depict some early
indications on the effectiveness of our approach.
5.1. A real-world example

Porting Java applications to use J%'s SQL module is straightforward. When a Java source file contains an SQL query, the code
is extracted, and a new external type is created. After that, we replace the standard JDBC calls with the API offered by the SQL
2 http://docs.oracle.com/javase/7/docs/api/java/sql/PreparedStatement.html

http://docs.oracle.com/javase/7/docs/api/java/sql/PreparedStatement.html


V. Karakoidas et al. / Computer Languages, Systems & Structures 41 (2015) 1–20 13
module. Consider the file add_user.java of the Examj3 project, which contains the following insert statement:

In J% it should be rewritten as follows:

External type InsertUserQuery should also be defined:

The above code retains the same functionality and without alterations in its logic, nor its basic structure.
5.2. Compile-time error detection

Consider the RegisterItem class in the RUBiS project.4 It contains an SQL statement, which is created by string concatenations.
3 https://github.com/bkarak/jmod-ports/blob/master/examj/java/src/add_user.java
4 https://github.com/bkarak/jmod-ports/blob/master/RUBiS/java/Servlets/edu/rice/rubis/servlets/RegisterItem.java

https://github.com/bkarak/jmod-ports/blob/master/examj/java/src/add_user.java
https://github.com/bkarak/jmod-ports/blob/master/RUBiS/java/Servlets/edu/rice/rubis/servlets/RegisterItem.java


Table 7
The size metrics that were used in the evaluation process.

Metric Description

Files Number of files
Lines of Code (LOC) Total lines of source code
Ext. LOC Total lines of the external type declarations
SQL queries Total number of queries
Classes Total number of classes
Interfaces Total number of interfaces
Packages Total number of packages
External types Total number of external type declarations

Table 8
Size metrics for JCrontab, Address Book, ExamJ, and RuBiS.

JCrontab AddressBook ExamJ RUBiS

Metric Name Java J% Java J% Java J% Java J%

Files 43 48 8 13 15 27 37 65
LOC 3362 3386 1242 1259 3852 3893 8831 8952
Ext. LOC – 18 – 28 – 40 – 72
SQL queries 5 5 6 5 13 12 44 28
External types – 5 – 5 – 12 – 28
Classes 40 40 8 8 15 15 37 37
Interfaces 3 3 0 0 0 0 0 0
Packages 6 6 2 2 1 1 3 4

V. Karakoidas et al. / Computer Languages, Systems & Structures 41 (2015) 1–2014
We created the InsertItemQuery type, similar to our porting strategy in the previous section:

To compile it, we executed the following command:

$ jmodc –compile-with-javac -i RUBiS/jmod/

[...]

[INFO] .../rubis/servlets/RegisterItem.java parsed (Java)

[...]

[INFO] .../rubis/servlets/InsertItemQuery.jmod parsed (External)

[...]

[INFO] SQLModule module called for .../servlets/InsertItemQuery.jmod
The above is an excerpt from the compiler output. In the first phase, the compiler identifies the external type and then it calls
the SQL module to generate the code.

If we accidentally wrote a mistyped input like insrt instead of the SQL keyword insert, a compile-time the error would
be reported:

$ jmodc –compile-with-javac -i RUBiS/jmod/

[...]

[INFO] SQLModule module called for .../InsertItemQuery.jmod

[ERROR] Could not parse SQL Statement - INSRT INTO items [...]

[ERROR] .../InsertItemQuery.jmod, error in SQL syntax : [...]

[...]



V. Karakoidas et al. / Computer Languages, Systems & Structures 41 (2015) 1–20 15
The compiler discovered the error in the SQL query, then it reported it as an error message. Similarly, errors regarding the
database schema are reported, like table and column identifier errors or type incompatibilities.
5.3. Measuring J% impact on real-world projects

The evaluation process aims to analyse the impact of J% in real-world projects. J% demands that each SQL code block
should be declared as a new external type. This can be easily related with significant growth in terms of user-defined types
and code. For that reason, the third evaluation experiment will focus on Size & Complexity (Table 7). To isolate efficiently the
level of change that our approach imposes, we evaluate each project by comparing its original form with a J% version.

The selected projects include JCrontab an open source crontab replacement, AddressBook, the sample program that is
distributed with the Java DB, ExamJ an open source Java editor, which aims to provide a framework to tutor and grade
programming language students and the popular benchmarking web platform RUBiS [48]. All these applications use SQL and
a relational database as a backend to store and access their data. All ported applications are published in Github.5

Table 8 summarises all size metric measurements for all projects. Table 9 contains the list of all the Java files per project
that were modified during the porting process. Note that, in general, most files of the projects remained unaffected and only
the files that contained SQL statements were altered. The “Java” column contains the original LOC of the file and the “J%” the
LOC after the porting.

The results show that by using J%, we should expect slightly increased LOC and number of files. This is the main problem of
J% in its current specification. For each SQL query a new external type should be declared, which practically means the
creation of a new source file. Consequently, the increased LOC can be explained by the declaration of boiler-plate code that
each external type requires. External LOC (Ext. LOC) counts the lines of code for the external types’ source files. Since Java does
not support external types, the count is always zero for the Java version of the projects. Note that the number of SQL Queries is
reduced in AddressBook, ExamJ and RUBiS. J% encourages query reusability and for the same queries, the same external type
can be reused. For example, the RUBiS project has originally 44 SQL queries and 16 of them could be reused.

The SQL code is used almost unmodified, except the external reference declarations. These are the source of the second
problematic situation. For each reference that is defined in an external type, a field parameter in the type's constructor is
generated. This is good and bad simultaneously; the strict constructor enforces compile-time validation of each parameter
that is passed to the SQL code and in addition is backed-up by a prepared statement when it is passed onto the query. Its
disadvantage is that the generation scheme is not very practical when one has many parameters, and it is complex to
remember their order, when the external type is actually used with the Java code. The example code in Section 5.1 points out
to this problem. The resulting generated code of InsertUserQuery type has five constructor parameters.
5.4. Compilation overhead

The next step in our evaluation included the measurement of the compiler's overhead, in terms of compilation time. The
compilation process includes two phases; the code generation where the SQL checking is performed, and Java code is
generated, and the compilation of the generated code to Java bytecode. Consider the following program:
5 https://github.com/bkarak/jmod-ports

https://github.com/bkarak/jmod-ports


Table 10
Size metrics for the participants.

Metric Name java simple ns-aware live-db

Files 1 2 3 3
LOC 31 42 51 54
Ext. LOC 0 9 9 9
SQL queries 1 1 1 1
Classes 1 2 2 2
External types 0 1 1 1

Table 11
Hardware and software configuration.

Operating system MacOS X 10.9.1
Java runtime env. 1.7.0_40 (64-bit)
System CPU Intel Core 2 Duo, 3.06 GHz
System memory 12GB

Table 9
LoC differentiation per file.

Java J% Diff

JCrontab
org/jcrontab/data/GenericSQLSource.java 253 236 �17

AddressBook
com/sun/demo/addressbook/db/AddressDao.java 297 261 �36

ExamJ
examj/add_user.java 171 159 �12
examj/code_send.java 178 160 �18
examj/load_code_db.java 407 382 �25
examj/remove_user.java 123 122 �1

RUBiS
edu/rice/rubis/servlets/Auth.java 54 51 �3
edu/rice/rubis/servlets/BrowseCategories.java 152 153 1
edu/rice/rubis/servlets/BrowseRegions.java 85 86 1
edu/rice/rubis/servlets/BuyNow.java 138 138 0
edu/rice/rubis/servlets/PutBid.java 199 194 �5
edu/rice/rubis/servlets/PutComment.java 156 156 0
edu/rice/rubis/servlets/RegisterItem.java 237 225 �12
edu/rice/rubis/servlets/RegisterUser.java 227 215 �12
edu/rice/rubis/servlets/SearchItemsByCategory.java 205 201 �4
edu/rice/rubis/servlets/SearchItemsByRegion.java 203 198 �5
edu/rice/rubis/servlets/ServletPrinter.java 713 710 �3
edu/rice/rubis/servlets/StoreBid.java 269 254 �15
edu/rice/rubis/servlets/StoreBuyNow.java 204 189 �15
edu/rice/rubis/servlets/StoreComment.java 176 162 �14
edu/rice/rubis/servlets/ViewBidHistory.java 168 166 �2
edu/rice/rubis/servlets/ViewItem.java 147 146 �1
edu/rice/rubis/servlets/ViewUserInfo.java 201 199 �2

Table 12
Basic descriptive statistic measures (ms).

Name Min Max Range 1st Qrtl 3rd Qrtl

java 676 1320 644 789 696
simple 906 1493 587 935 914
ns-aware 909 1103 194 932 923
live-db 1116 1795 679 1147 1137

V. Karakoidas et al. / Computer Languages, Systems & Structures 41 (2015) 1–2016



Table 13
Basic descriptive statistics measures (cont'd).

Name Median Mean Stddev Overhead (%)

java 683 705.74 29.31 0.00
simple 921 936.94 29.12 24.68
ns-aware 925 936.45 17.06 24.64
live-db 1123 1153.10 37.69 38.80

Table 14
Basic descriptive statistic measures for compiler overhead (ms).

Name Min Max Range 1st Qrtl 3rd Qrtl

jmodc 1241 2683 1442 1367 1241
javac 1086 1770 684 1185 1240

Table 15
Basic descriptive statistic measures for compiler overhead (cont'd) (ms).

Name Median Mean Stddev Overhead (%)

jmodc 1333 1463.42 190.33 13.30
javac 1180 1283.50 135.20 0.00

V. Karakoidas et al. / Computer Languages, Systems & Structures 41 (2015) 1–20 17
The code opens a connection to a MySQL database, performs a select query, then iterates over the results and prints all the
customers’ names. We ported this program and produced three variants of it; one that performed only a basic check on the
SQL statement (simple), a second that performed the basic check, then also examined if the query was valid against a specific
database schema (ns-aware), and a third that executed the query to the actual database to validate it(live-db). Table 10
presents a set of size metrics for each variation of the program.

Observe that each version of the program differs in terms of LOC. The original program had 31 lines of code, while the
simple, ns-aware, and live-db versions were 26%, 39% and 42% bigger. This phenomenon was analysed in the previous
sections, where we identified as the source of the problem, the declaration of the external types and their configurations.

The actual test included an iteration of 2,000 compilations for each version of the program. Table 11 lists the hardware
and software characteristics of the benchmark environment. The results were analysed, and a list of basic statistical
measures are presented in Tables 12 and 13. As expected, the Java version compiles faster with an average value of
705.74 ms, while the imposed overhead for the simple, ns-aware, and live-db versions is 24.68% (936.94 ms), 24.64%
(936.45 ms), and 38.80% (1153.10 ms) respectively. The results show that is cheap to enable query check against a database
schema. Of course, results may vary. In the case of a more complex schema, it is possible that the ns-aware could be slower.



V. Karakoidas et al. / Computer Languages, Systems & Structures 41 (2015) 1–2018
The live-db variation had the slowest performance, which was also expected, since it requires to connect to a live database
server and execute each query.

Tables 14 and 15 contain the result of a much simpler experiment. A simple Java program was compiled by jmodc (J%'s
compiler) and javac to measure compilation time. Since jmodc in pure Java code, it copies the file, then it compiles it with
javac, the results proven that is slower than his contestant. The experiment included 100 iterations and jmodc was 13.3%
slower than javac.
6. Conclusions

The contribution of J% SQL module is that it supports embedding of SQL code in Java programs in a type-safe and syntax
checked way. Each SQL statement is checked and all errors are reported at compile-time. In addition, Java types are mapped
into SQL types, and all interactions between the two languages are also checked at compile-time.

The integration of the SQL query language to the J% compiler system provides developers with some notable features. The
first involves an extensive query configuration. In essence, each query can be configured with different code generation and
testing features. This is achieved with the utilisation of the external configuration concept introduced by our approach. Query
validation is another key feature of J%. If this feature is enabled, queries can be checked against a specified database schema,
which is provided as part of the query configuration.

The J% SQL module utilises the existing JDBC specification, without alienating the developer with new APIs or frameworks. In
addition, our approach supports the transparent usage of prepared statements. Furthermore, J% employs the performance
optimisations offered by the prepare statements compilation in a transparent manner. Finally, by using prepared statements,
J% provides shielding against input validation attacks. This feature could be very useful, especially in the case of web
applications.

One of the disadvantages of our approach is the fact that for every single query the developer must define a new external
type, which may lead to significant external type pollution in large projects. Features like type mapping and compile-time
configuration, greatly support the development process and permit the implementation of advanced features, such as live
database testing in the SQL module. To assess J%'s impact to the software development process, more experiments must be
performed; thus the measurements presented here were indicative.
7. Future work

Enhancing J% and its SQL support module in both features and design is planned in the future. Such enhancements could
involve SQL code reuse by further extensions of the SQL module to support multiple backends. Within the boundaries of our
research we intend to examine the following concepts:

Dynamic SQL generation: Our extension deals only with static SQL statements. In the future, we plan to utilise existing
research such as [22] and provide mechanisms that support dynamically generated statements.

External configuration via annotations: The introduction of annotations in Java since version 1.5 provided the solid
foundation for developers to introduce a series of custom compile-time checks and generation of boilerplate
code. J% SQL module could also use annotations to provide compile-time information, a feature that is currently
implemented with the concept of configuration types. Consider the following code:

The annotation (@sql) instructs the compiler to perform compile-time namespace checks to the following SQL

query. Traditionally this could be done by the SQL configuration types.
DSL optimisations: The code generation process could be enhanced to include domain-specific optimisations that may boost

performance in terms of execution, e.g. caching, like the ones presented in reference [49].
Support more database backends: Our implementation focuses on the MySQL database dialect. We plan to provide support for

other major database systems. The support will include better analysis of custom SQL statements and support for
type mapping for unique types that each database backend offers. The work to support each RDBMS will further
expand the module's capabilities and provides the starting point to address next-level set of problems, like
enhancing database security model at compile-time, etc.

Parameter object class constructor: With the current code generation approach, complex SQL statements with many external
reference definitions can lead to complex constructors, with many parameters. The code generation mechanism



V. Karakoidas et al. / Computer Languages, Systems & Structures 41 (2015) 1–20 19
can be modified to generate parameter objects to group all the constructor parameters in one coherent class
definition.
Acknowledgements and code availability

The present research is under the Action 2 of AUEB's6 Research Funding Program for Excellence and Extroversion of the
academic year 2014/2015. It is financed by the Athens University of Economics and Business Research Center, Grant Number
ΕΡ-2166-01/01-01.

The authors would like to thank George Oikonomou and Christos KK Loverdos for their insightful comments and
corrections during the compilation of this paper. J% is available in Github7 under the GNU Public License v3. A collection of
ported programs and the benchmark harness are maintained in https://github.com/bkarak/jmod-ports.

References

[1] Fowler M. Domain-specific languages. Upper Saddle River, NJ: Addison-Wesley; 2011.
[2] Voelter M. DSL engineering: designing, implementing and using domain-specific languages. CreateSpace Independent Publishing Platform; 2013.
[3] van Deursen A, Klint P. Little languages: little maintenance. J Softw Maint 1998;10(2):75–92.
[4] Bentley J. Programming pearls: little languages. Commun ACM 1986;29(8):711–21.
[5] Spinellis D. Reliable software implementation using domain-specific languages. In: Schuëller GI, Kafka P, editors. Proceedings ESREL '99 – the tenth

European conference on safety and reliability. ESRA, VDI, TUM. Rotterdam: A.A. Balkema; 1999. p. 627–31.
[6] Spinellis D, Guruprasad V. Lightweight languages as software engineering tools. In: USENIX conference on domain-specific languages. Berkeley:

USENIX Association|Washington, DC, United States of America:; p. 67–76.
[7] Tobin-Hochstadt S, Felleisen M. Interlanguage migration: from scripts to programs. In: OOPSLA '06: companion to the 21st ACM SIGPLAN conference

on object-oriented programming systems, languages, and applications. New York, NY, USA: ACM Press; 2006. p. 964–74.
[8] Leijen D, Meijer E. Domain specific embedded compilers. In: PLAN '99: proceedings of the 2nd conference on domain-specific languages. Austin, Texas,

United States of America: ACM Press; 1999. p. 109–22.
[9] Rhiger M. A foundation for embedded languages. ACM Trans Programm Lang Syst 2003;25(3):291–315.
[10] Heering J, Mernik M. Domain-specific languages for software engineering. In: Proceedings of the 35th Hawaii international conference on system

sciences. |Washington, DC, United States of America: IEEE; 2002.
[11] Chaudhuri S, Narasayya V, Syamala M. Bridging the application and DBMS divide using static analysis and dynamic profiling. In: Proceedings of the

35th SIGMOD international conference on management of data. SIGMOD '09. New York, NY, USA: ACM; 2009. p. 1039–42.
[12] Seipel D, Boehm AM, Fröhlich M. JSquash: source code analysis of embedded database applications for determining SQL statements. In: Proceedings of

the 18th international conference on applications of declarative programming and knowledge management. INAP'09. Berlin, Heidelberg: Springer-
Verlag; 2011. p. 153–69.

[13] Wassermann G, Gould C, Su Z, Devanbu P. Static checking of dynamically generated queries in database applications. ACM Trans Softw Eng
Methodol 2007;16(4).

[14] Gil JY, Lenz K. Simple and safe SQL queries with Cþþ templates. Sci Comput Programm 2010;75:573–95.
[15] Fisher M, Ellis J, Bruce J. JDBC API tutorial and reference. 3rd ed.Addison-Wesley Professional; 2003.
[16] Gosling J, Joy B, Steele G, Bracha G. The Java language specification. 3rd ed.Addison-Wesley; 2005.
[17] Karakoidas V, Spinellis D. J%: integrating domain-specific languages with Java. In: Chrissikopoulos V, Alexandris N, Douligeris C, Sioutas S, editors. PCI

2009: proceedings of 13th Panhelenic conference on informatics. Corfu, Greece: IEEE Computer Society; 2009. p. 109–13.
[18] Halfond WG, Viegas J, Orso A. A classification of SQL-injection attacks and countermeasures. In: Proceedings of the international symposium on secure

software engineering; 2006.
[19] Beck K. Test driven development: by example. Addison-Wesley Professional; 2002.
[20] Mernik M, Heering J, Sloane AM. When and how to develop domain-specific languages. ACM Comput Surv 2005;37(4):316–44.
[21] Loverdos CKK, Syropoulos A. Steps in scala: an introduction to object-functional programming. Edinburgh, United Kingdom: Cambridge University

Press; 2010.
[22] Gould C, Su Z, Devanbu P. Static checking of dynamically generated queries in database applications. In: Proceedings of the 26th international

conference on software engineering (ICSE'04). IEEE; 2004. p. 645–54.
[23] Erdweg S. Extensible languages for flexible and principled domain abstraction [Ph.D. thesis]. Philipps-Universitat Marburg; 2013.
[24] Annamaa A, Breslav A, Kabanov J, Vene V. An interactive tool for analyzing embedded SQL queries. In: Proceedings of the 8th Asian conference on

programming languages and systems. APLAS'10. Berlin, Heidelberg: Springer-Verlag; 2010. p. 131–8.
[25] Seipel D, Boehm AM, Fröhlich M. JSquash: source code analysis of embedded database applications for determining SQL statements. In: Proceedings of

the 18th international conference on applications of declarative programming and knowledge management. INAP'09. Berlin, Heidelberg: Springer-
Verlag; 2011. p. 153–69.

[26] McClure RA, Krüger IH. SQL DOM: compile-time checking of dynamic SQL statements. In: ICSE '05: proceedings of the 27th international conference
on software engineering; 2005. p. 88–96. http://dx.doi.org/10.1145/1062455.1062487.

[27] Grust T, Mayr M. A deep embedding of queries into ruby. In: Proceedings of the 2012 IEEE 28th international conference on data engineering. ICDE '12.
Washington, DC, USA: IEEE Computer Society; 2012. p. 1257–60. http://dx.doi.org/10.1109/ICDE.2012.121.

[28] Bierman G, Meijer E, Schulte W. The essence of data access in Cw. In: ECOOP 2005: proceedings of the 19th European conference on object-oriented
programming; 2005. p. 287–311.

[29] Vogt JC. Type safe integration of query languages into scala [Ph.D. thesis]. RWTH Aachen University; August 2011.
[30] Meijer E, Beckman B, Bierman G. LINQ: reconciling object, relations and XML in the .NET framework. In: SIGMOD '06: proceedings of the 2006 ACM

SIGMOD international conference on management of data. New York, NY, USA: ACM Press; 2006. p. 706.
[31] Eisenberg A, Melton J. SQLJ part 1: SQL routines using the Java programming language. SIGMOD Rec 1999;28(4):58–63.
[32] Hibernate. Available online at: 〈http://www.hibernate.org/〉; 2014.
[33] Biswas R, Ort E. The Java persistence API – a simpler programming model for entity persistence. Available online at: 〈http://www.oracle.com/

technetwork/articles/javaee/jpa-137156.html〉; 2006.
6 Athens University of Economics and Business.
7 https://github.com/bkarak/jmod

https://github.com/bkarak/jmod-ports
http://refhub.elsevier.com/S1477-8424(15)00002-0/sbref1
http://refhub.elsevier.com/S1477-8424(15)00002-0/sbref3
http://refhub.elsevier.com/S1477-8424(15)00002-0/sbref4
http://refhub.elsevier.com/S1477-8424(15)00002-0/sbref9
http://refhub.elsevier.com/S1477-8424(15)00002-0/sbref50013
http://refhub.elsevier.com/S1477-8424(15)00002-0/sbref50013
http://refhub.elsevier.com/S1477-8424(15)00002-0/sbref14
http://refhub.elsevier.com/S1477-8424(15)00002-0/sbref14
http://refhub.elsevier.com/S1477-8424(15)00002-0/sbref14
http://refhub.elsevier.com/S1477-8424(15)00002-0/sbref14
http://refhub.elsevier.com/S1477-8424(15)00002-0/sbref14
http://refhub.elsevier.com/S1477-8424(15)00002-0/sbref14
http://refhub.elsevier.com/S1477-8424(15)00002-0/sbref14
http://refhub.elsevier.com/S1477-8424(15)00002-0/sbref15
http://refhub.elsevier.com/S1477-8424(15)00002-0/sbref16
http://refhub.elsevier.com/S1477-8424(15)00002-0/sbref19
http://refhub.elsevier.com/S1477-8424(15)00002-0/sbref20
http://refhub.elsevier.com/S1477-8424(15)00002-0/sbref21
http://refhub.elsevier.com/S1477-8424(15)00002-0/sbref21
http://refhub.elsevier.com/S1477-8424(15)00002-0/sbref21
dx.doi.org/10.1145/1062455.1062487
dx.doi.org/10.1109/ICDE.2012.121
http://refhub.elsevier.com/S1477-8424(15)00002-0/sbref31
http://www.hibernate.org/
http://www.oracle.com/technetwork/articles/javaee/jpa-137156.html
http://www.oracle.com/technetwork/articles/javaee/jpa-137156.html
https://github.com/bkarak/jmod


V. Karakoidas et al. / Computer Languages, Systems & Structures 41 (2015) 1–2020
[34] Typesafe. Slick: functional relational mapping for scala. Available online at: 〈http://slick.typesafe.com〉; 2014.
[35] Squeryl. Available online at: 〈http://squeryl.org〉; 2014.
[36] Typesafe. Anorm is not a object relational mapper. Available online at: 〈http://www.playframework.com/modules/scala-0.9.1/anorm〉; 2014.
[37] ODB: Cþþ Object-Relational Mapping. Available online at: 〈http://codesynthesis.com/products/odb/〉; 2014.
[38] Joy C, Gradman M. Database template library. Available online at: 〈http://dtemplatelib.sourceforge.net/dtl_introduction.htm〉; 2014.
[39] Maciej S, Hutton S, Zeitlin V, Loskot M. SOCI – the Cþþ database access library. URL: 〈http://soci.sourceforge.net/〉; August 2013.
[40] Jooq. Available online at: 〈http://www.jooq.org〉; 2014.
[41] Wikipedia, Powerbuilder. Available online at: 〈http://en.wikipedia.org/wiki/PowerBuilder〉; 2014.
[42] Bravenboer M, Visser E. Concrete syntax for objects: domain-specific language embedding and assimilation without restrictions. In: OOPSLA '04:

proceedings of the 19th annual ACM SIGPLAN conference on object-oriented programming, systems, languages, and applications. New York, NY, USA:
ACM; 2004. p. 365–83. http://doi.acm.org/10.1145/1028976.1029007.

[43] Tratt L. Domain-specific language implementation via compile-time meta-programming. ACM Trans Programm Lang Syst 2008;30(6):
1–40, http://dx.doi.org/10.1145/1391956.1391958.

[44] Renggli L, Gírba T, Nierstrasz O. Embedding languages without breaking tools. In: ECOOP 2010: proceedings of the 24th European conference on
object-oriented programming; 2010.

[45] Cordy JR. Source transformation, analysis and generation in TXL. In: PEPM '06: proceedings of the 2006 ACM SIGPLAN symposium on partial
evaluation and semantics-based program manipulation. New York, NY, USA: ACM Press; 2006. p. 1–11. http://dx.doi.org/10.1145/1111542.1111544.

[46] Dinkelaker T, Eichberg M, Mezini M. Incremental concrete syntax for embedded languages with support for separate compilation. Sci Comput
Programm 2013;78(6):615–32.

[47] Sommerville I. Software engineering. sixth ed. Addison-Wesley; 2001.
[48] Cecchet E, Chanda A, Elnikety S, Marguerite J, Zwaenepoel W. Performance comparison of middleware architectures for generating dynamic web

content. In: Proceedings of the ACM/IFIP/USENIX 2003 international conference on middleware. Middleware '03. New York, NY, USA: Springer-Verlag
New York, Inc.; 2003. p. 242–61.

[49] Karakoidas V, Spinellis D. FIRE/J: optimizing regular expression searches with generative programming. Softw: Pract Exp 2008;38(6):557–73.

http://slick.typesafe.com
http://squeryl.org
http://www.playframework.com/modules/scala-0.9.1/anorm
http://codesynthesis.com/products/odb/
http://dtemplatelib.sourceforge.net/dtl_introduction.htm
http://soci.sourceforge.net/
http://www.jooq.org
http://en.wikipedia.org/wiki/PowerBuilder
http://doi.acm.org/10.1145/1028976.1029007
http://dx.doi.org/10.1145/1391956.1391958
http://dx.doi.org/10.1145/1391956.1391958
http://dx.doi.org/10.1145/1391956.1391958
dx.doi.org/10.1145/1111542.1111544
http://refhub.elsevier.com/S1477-8424(15)00002-0/sbref46
http://refhub.elsevier.com/S1477-8424(15)00002-0/sbref46
http://refhub.elsevier.com/S1477-8424(15)00002-0/sbref47
http://refhub.elsevier.com/S1477-8424(15)00002-0/sbref49

	A type-safe embedding of SQL into Java using the extensible compiler framework J%
	Introduction
	Motivation
	Approaches of integrating SQL with general-purpose languages
	Implementation: embedding
	Implementation: preprocessor
	Design: language exploitation (extension)
	Design: language exploitation (specialisation)
	Implementation: extensible compiler/interpreter

	Design and implementation of the SQL module
	The sql module basics
	Configuring the sql queries
	Type mapping
	External references
	The compilation process
	Code generation

	Evaluation
	A real-world example
	Compile-time error detection
	Measuring J% impact on real-world projects
	Compilation overhead

	Conclusions
	Future work
	Acknowledgements and code availability
	References




